分析 作CE⊥AB于E,根據(jù)平行線的性質(zhì)求出∠ECA的度數(shù),根據(jù)三角函數(shù)的概念求出AE的長,求出∠B的度數(shù),求出BE的長,得到答案.
解答 解:
作CE⊥AB于E,
則CE∥AD,
∴∠ECA=∠DAC=15°,
cos∠ECA=$\frac{EC}{AC}$,
∴EC=10×0.97=9.7,
sin∠ECA=$\frac{AE}{AC}$,
AE=10×0.26=2.6,
∵∠DCA=15°,
∴∠BAC=75°,又∠BCA=75°,
∴∠ABC=30°,
BE=$\sqrt{3}$CE=16.78(m),
AB=AE+BE=2.6+16.78=19.38≈19.4(m),
答:樹AB的高度為19.4m.
點評 本題考查的是解直角三角形的應(yīng)用,掌握銳角三角函數(shù)的概念是解題的關(guān)鍵,解答時,要把實際問題轉(zhuǎn)化為解直角三角形的問題.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com