分析 (1)把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合,證出△AFG≌△AFE,根據(jù)全等三角形的性質(zhì)得出EF=FG,即可得出答案;
(2)把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合,證出△AFE≌△AFG,根據(jù)全等三角形的性質(zhì)得出EF=FG,即可得出答案;
(3)把△ACE旋轉(zhuǎn)到ABF的位置,連接DF,證明△AFE≌△AFG(SAS),則EF=FG,∠C=∠ABF=45°,△BDF是直角三角形,根據(jù)勾股定理即可作出判斷.
解答 解:(1)如圖1所示:![]()
∵AB=AD,
∴把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合,
∵∠ADC=∠B=90°,
∴∠FDG=180°,點(diǎn)F、D、G共線,
∴∠DAG=∠BAE,AE=AG,
∴∠FAG=∠FAD+∠GAD=∠FAD+∠BAE=90°-45°=45°=∠EAF,即∠EAF=∠FAG.
在△EAF和△GAF中,
$\left\{\begin{array}{l}{AF=AF}\\{∠EAF=∠GAF}\\{AE=AG}\end{array}\right.$,
∴△AFG≌△AFE.
∴EF=FG.
∴EF=DF+DG=DF+BE,即EF=BE+DF.
故答案為:△AFE;BE+FD=EF.
(2)DF=EF+BE.
理由:如圖2所示. ![]()
∵AB=AD,
∴把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合,
∵∠ADC=∠ABE=90°,
∴點(diǎn)C、D、G在一條直線上.
∴EB=DG,AE=AG,∠EAB=∠GAD.
又∵∠BAG+∠GAD=90°,
∴∠EAG=∠BAD=90°.
∵∠EAF=45°,
∴∠FAG=∠EAG-∠EAF=90°-45°=45°.
∴∠EAF=∠GAF.
在△EAF和△GAF中,
$\left\{\begin{array}{l}{EA=GA}\\{∠EAF=∠GAF}\\{EF=FG}\end{array}\right.$,
∴△EAF≌△GAF.
∴EF=FG.
∵FD=FG+DG,
∴DF=EF+BE.
(3)把△ACE旋轉(zhuǎn)到ABF的位置,連接DF,則∠FAB=∠CAE.![]()
∵∠BAC=90°,∠DAE=45°,
∴∠BAD+∠CAE=45°,
又∵∠FAB=∠CAE,
∴∠FAD=∠DAE=45°,
則在△ADF和△ADE中,
$\left\{\begin{array}{l}{AD=AD}\\{∠FAD=∠DAE}\\{AF=AE}\end{array}\right.$,
∴△ADF≌△ADE.
∴DF=DE,∠C=∠ABF=45°.
∴∠BDF=90°.
∴△BDF是直角三角形.
∴BD2+BF2=DF2.
∴BD2+CE2=DE2.
∴DE=$\sqrt{{1}^{2}+{2}^{2}}$=$\sqrt{5}$.
故答案為:$\sqrt{5}$.
點(diǎn)評(píng) 本題考查了全等三角形的性質(zhì)和判定,正方形的性質(zhì)的應(yīng)用,解此題的關(guān)鍵是能正確作出輔助線得出全等三角形,綜合性比較強(qiáng),有一定的難度.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 2b-a+1 | B. | 1-a | C. | a-1-2b | D. | a+1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
| a | b | c |
| d | e | f |
| g | h | i |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com