【題目】已知△ABC中,D為AB邊上任意一點,DF∥AC交BC于F,AE∥BC,∠CDE=∠ABC=∠ACB=α.![]()
(1)如圖1,當α=60°時,求證:△DCE是等邊三角形.
(2)如圖2.當α=45°時,求證:①
=
;②CE⊥DE.
(3)如圖3,當α為任意銳角時,請直接寫出線段CE與DE的數(shù)量關(guān)系(用α表示)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平行四邊形ABCD中,對角線AC、BD交于點O(如圖),則圖中全等三角形的對數(shù)為( )
![]()
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,AB=AC,∠B=50°,P 是邊 AB 上的一個動點(不與頂點 A 重合),則∠BPC 的度數(shù)可能是
![]()
A. 50° B. 80° C. 100° D. 130°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB為⊙O直徑,D是
的中點,DE⊥AC交AC的延長線于E,⊙O的切線交AD的延長線于F.![]()
(1)求證:直線DE與⊙O相切;
(2)已知DG⊥AB且DE=4,⊙O的半徑為5,求tan∠F的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直徑AE平分弦CD,交CD于點G,EF∥CD,交AD的延長線于F,AP⊥AC交CD的延長線于點P.![]()
(1)求證:EF是⊙O的切線;
(2)若AC=2,PD=
CD,求tan∠P的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)活動問題情境:
如圖1,在△ABC中,AB=AC,∠BAC=90°,D,E分別是邊AB,AC的中點,將△ADE繞點A順時針旋轉(zhuǎn)α角(0°<α<90°)得到△AD′E′,連接CE′,BD′.探究CE′與BD′的數(shù)量關(guān)系;
![]()
探究發(fā)展:
(1)圖1中,猜想CE′與BD′的數(shù)量關(guān)系,并證明;
(2)如圖2,若將問題中的條件“D,E分別是邊AB,AC的中點”改為“D為AB邊上任意一點,DE∥BC交AC于點E“,其他條件不變,(1)中CE′與BD′的數(shù)量關(guān)系還成立嗎?請說明理由;
拓展延伸:
(3)如圖3,在△ABC中,AB=AC,∠BAC=60°,點D,E分別在AB,AC上,且DE∥BC,將△ADE繞點A順時針旋轉(zhuǎn)60°得到△AD′E′,連接CE′,BD′,請你仔細觀察,提出一個你最關(guān)心的數(shù)學(xué)問題(例如:CE′與BD′相等嗎?).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,共頂點的兩個三角形△ABC,△AB′C′,若 AB=AB′,AC=AC′,且∠BAC+∠B′AC′=180°,我們稱△ABC 與△AB′C′互為“頂補三角形”.
(1)已知△ABC 與△ADE 互為“頂補三角形”,AF 是△ABC 的中線.
①如圖 2,若△ADE 為等邊三角形時,求證:DE=2AF;
②如圖 3,若△ADE 為任意三角形時,上述結(jié)論是否仍然成立?請說明理由.
![]()
(2)如圖4,四邊形 ABCD 中,∠B+∠C=90°.在平面內(nèi)是否存在點 P,使△PAD 與△PBC 互為“頂補三角形”, 若存在,請畫出圖形,并證明;若不存在,請說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列解題過程的空白處填上適當?shù)膬?nèi)容(推理的理由或數(shù)學(xué)表達式)如圖,已知
,
、
分別平分
和
,求證:
.
證明:∵AB//CD,(已知)
∴∠ABC=∠______.(兩直線平行,內(nèi)錯角相等)
∵__________.(已知)
∴∠EBC=
∠ABC,(角的平分線定義)
同理,∠FCB=______.
∵∠EBC=∠FCB.(等量代換)
∴BE//CF.(____________________)
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點A(a,0),B(0,b),實數(shù)a、b滿足
.
(1)求點A、點B的坐標;
(2)若點P的坐標是P(-2,x),且
,且△PAB的面積為7,求x的值;
(3)如圖,過點B作BC∥x軸,Q是x軸上點A左側(cè)的一動點連接QB,BM平分∠QBA,BN平分∠ABC,當點Q運動時直接寫出
____________.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com