定義新運算:(a,b)?(c,d)=(ac,bd),(a,b)⊕(c,d)=(a+c,b+d)(a,b)*(c,d)=a2+c2-bd
(1)求(1,2)*(3,-4)的值;
(2)已知(1,2)?(p,q)=(2,-4),分別求出p與q的值;
(3)在(2)的條件下,求(1,2)⊕(p,q)的結(jié)果;
(4)已知x2+2xy+y2=5,x2-2xy+y2=1,求(x,5)*(y,xy)的值.
解:(1)∵(a,b)*(c,d)=a2+c2-bd,
∴(1,2)*(3,-4)=12+32-2×(-4)
=1+9+8
=18;
(2)∵(a,b)?(c,d)=(ac,bd),
∴(1,2)?(p,q)=(1×p,2×q),
∵(1,2)?(p,q)=(2,-4),
∴p=2,2q=-4,
∴q=-2;
(3)∵q=-2,p=2,(a,b)⊕(c,d)=(a+c,b+d),
∴(1,2)⊕(p,q)
=(1,2)⊕(2,-2)
=(3,0);
(4)∵x2+2xy+y2=5,x2-2xy+y2=1,
∴x2+y2=3,xy=1,
∵(a,b)*(c,d)=a2+c2-bd,
∴(x,5)*(y,xy)
=x2+y2-5xy
=3-5
=-2.
分析:(1)由(a,b)*(c,d)=a2+c2-bd,即可推出(1,2)*(3,-4)=12+32-2×(-4),通過計算即可推出結(jié)果;
(2)由(a,b)?(c,d)=(ac,bd),(1,2)?(p,q)=(1×p,2×q),所以p=2,2q=-4,通過解方程即可推出q的值;
(3)由(2)所推出的結(jié)論,結(jié)合已知條件,套用公式后即可推出結(jié)果;
(4)由x2+2xy+y2=5,x2-2xy+y2=1,即可推出x2+y2=3,xy=1,然后通過套用公式可知,原式=x2+y2-5xy,通過代入求值即可求出結(jié)果.
點評:本題主要考查有理數(shù)的混合運算,關(guān)鍵在于正確的根據(jù)已知條件套用公式.