解:(1)[-0.5
2+(-

)
2-|-2
2-4|+(2

)
2×

]÷(0.1)
2,
=(-

+

-|-8|+

×

)÷

,
=(-8+3)×100,
=-500;
(2)1

-2

+3

-4

+…+(2k-1)

-2k

+…-2010

,
=1+(1-

)-(3-

)+3+(

-

)-(5-

)+…+(2k-1)+(

-

)-[2k+1-

]+…-(2010+1-

),
=1+

-3+

-

+3+

-

-5+

-

+…+(2k-1)+

-

-(2k+1)+

-

]+…-2011+

-

,
=(1-3+3-5+5-…-2009+2009-2011)+(1-

+

-

+

-

+

-

+…+

-

+

-

+…+

-

),
=-2010+(1-

),
=-2009-

,
=-2009

;
(3)

+

+…+

-

(

+

+…+

),
=

(1+

+

+

+…+

+1)-

×

(1+

+

+

+…+

+1),
=

(1+

+

+

+…+

+1-1-

-

-

-…-

-1),
=

(

+

),
=

×

,
=

.
分析:(1)根據(jù)有理數(shù)的混合運(yùn)算,先算乘方,然后去掉絕對值號(hào)根據(jù)運(yùn)算順序,把括號(hào)里面的計(jì)算,最后再根據(jù)除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù)進(jìn)行計(jì)算即可得解;
(2)先把帶分?jǐn)?shù)分離成整數(shù)與分?jǐn)?shù)的形式,同時(shí)把第偶數(shù)個(gè)改寫成分子是1的分?jǐn)?shù),再把分?jǐn)?shù)寫出兩個(gè)分?jǐn)?shù)的差的形式,進(jìn)行計(jì)算即可得解;
(3)把前2010個(gè)分?jǐn)?shù)看作被減數(shù),后面括號(hào)里面的數(shù)看作減數(shù),根據(jù)被減數(shù)中每一個(gè)分?jǐn)?shù)的分母中兩個(gè)數(shù)的和都相等,減數(shù)中每一個(gè)分?jǐn)?shù)的分母中的兩個(gè)數(shù)的和也都相等,可以把每一個(gè)分?jǐn)?shù)寫成兩個(gè)分?jǐn)?shù)的和的形式,

=

=

(1+

),

=

=

(

+

),…,

=

=

(

+1),同理

=

=

(1+

),

=

=

(

+

),…

=

=

(

+1),然后根據(jù)有理數(shù)的混合運(yùn)算法則以及乘法分配律進(jìn)行計(jì)算即可得解.
點(diǎn)評(píng):本題考查了有理數(shù)的混合運(yùn)算,(2)把帶分?jǐn)?shù)寫成整數(shù)與分?jǐn)?shù)的和的形式,并把分?jǐn)?shù)再寫出兩個(gè)分?jǐn)?shù)的差的形式是解題的關(guān)鍵,(3)根據(jù)分?jǐn)?shù)的分母上的兩個(gè)數(shù)的和相等,拆分成兩個(gè)分?jǐn)?shù)的和的形式是解題的關(guān)鍵,本題難度較大,規(guī)律性較強(qiáng),需仔細(xì)研究,認(rèn)真觀察分析.