【題目】已知二次函數(shù)y=ax2+bx+6的圖像開口向下,與x軸交于點(diǎn)A(-6,0)和點(diǎn)B(2,0),與y軸交于點(diǎn)C,點(diǎn)P是該函數(shù)圖像上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)C重合)
![]()
(1) 求二次函數(shù)的關(guān)系式;
(2)如圖1當(dāng)點(diǎn)P是該函數(shù)圖像上一個(gè)動(dòng)點(diǎn)且在線段
的上方,若△PCA的面積為12,求點(diǎn)P的坐標(biāo);
(3)如圖2,該函數(shù)圖像的頂點(diǎn)為D,在該函數(shù)圖像上是否存在點(diǎn)E,使得∠EAB=2∠DAC,若存在請(qǐng)直接寫出點(diǎn)E的坐標(biāo);若不存在請(qǐng)說明理由.
【答案】(1)
;(2)(﹣2,8)或(﹣4,6);(3) ![]()
或
.
【解析】
(1)由題意設(shè)函數(shù)的表達(dá)式為:
結(jié)合已知函數(shù)解析式即可求解;
(2)由點(diǎn)P在線段
的上方,設(shè)
連接
,從而可得答案;
(3)證明
為直角三角形,延長DC至D′使CD=CD′,連接AD′,過點(diǎn)D作DH⊥AD′,計(jì)算sin∠DAC ,sin2∠DAC=sin∠DAD′得到sin∠EAB,tan∠EAB ,利用一次函數(shù)的性質(zhì)得一次函數(shù)是解析式,聯(lián)立解析式解方程組即可求解.
解:(1)
拋物線與x軸交于點(diǎn)A(-6,0)和點(diǎn)B(2,0),
設(shè)函數(shù)的表達(dá)式為:
二次函數(shù)
解得:
函數(shù)的表達(dá)式為:
.
(2)如圖1所示,
在
的上方,
![]()
連接
設(shè)
把
代入
,
解得:
所以點(diǎn)P坐標(biāo)為
或
(3)
拋物線為:
,
為頂點(diǎn),
則
延長DC至D′使CD=CD′,連接AD′,
過點(diǎn)D作DH⊥AD′, 則
![]()
即:
解得:
∠EAB=2∠DAC,
①當(dāng)點(diǎn)E在AB上方時(shí), 則直線AE的表達(dá)式為:
,
將點(diǎn)
坐標(biāo)代入上式:
直線AE的表達(dá)式為:
解得:
或
(舍去)
即點(diǎn)
②當(dāng)點(diǎn)E在AB下方時(shí),
設(shè)直線
為:
將點(diǎn)
坐標(biāo)代入上式:
直線
為:
![]()
解得:
或
(舍去)
綜上,點(diǎn)
或![]()
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ABCD中,∠BAD的平分線交直線BC于點(diǎn)E,交直線DC于點(diǎn)F.
(1)在圖1中證明CE=CF;
(2)若∠ABC=90°,G是EF的中點(diǎn)(如圖2),直接寫出∠BDG的度數(shù);
(3)若∠ABC=120°,F(xiàn)G∥CE,F(xiàn)G=CE,分別連接DB、DG(如圖3),求∠BDG的度數(shù).![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(提出問題)課間,一位同學(xué)拿著方格本遇人便問:“如圖所示,在邊長為1的小正方形組成的網(wǎng)格中,點(diǎn)A、B、C都是格點(diǎn),如何證明點(diǎn)A、B、C在同一直線上呢?”
![]()
(分析問題)一時(shí)間,大家議論開了. 同學(xué)甲說:“可以利用代數(shù)方法,建立平面直角坐標(biāo)系,利用函數(shù)的知識(shí)解決”,同學(xué)乙說:“也可以利用幾何方法…”同學(xué)丙說:“我還有其他的幾何證法”……
(解決問題)請(qǐng)你用兩種方法解決問題
方法一(用代數(shù)方法):
![]()
方法二(用幾何方法):
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知已知拋物線經(jīng)過原點(diǎn)O和x軸上一點(diǎn)A(4,0),拋物線頂點(diǎn)為E,它的對(duì)稱軸與x軸交于點(diǎn)D,直線y=﹣2x﹣1經(jīng)過拋物線上一點(diǎn)B(﹣2,m)且與y軸交于點(diǎn)C,與拋物線的對(duì)稱軸交于點(diǎn)F.
(1)求m的值及該拋物線的解析式
(2)P(x,y)是拋物線上的一點(diǎn),若S△ADP=S△ADC,求出所有符合條件的點(diǎn)P的坐標(biāo).
(3)點(diǎn)Q是平面內(nèi)任意一點(diǎn),點(diǎn)M從點(diǎn)F出發(fā),沿對(duì)稱軸向上以每秒1個(gè)單位長度的速度勻速運(yùn)動(dòng),設(shè)點(diǎn)M的運(yùn)動(dòng)時(shí)間為t秒,是否能使以Q、A、E、M四點(diǎn)為頂點(diǎn)的四邊形是菱形?若能,請(qǐng)直接寫出點(diǎn)M的運(yùn)動(dòng)時(shí)間t的值;若不能,請(qǐng)說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某游樂園有一個(gè)直徑為16米的圓形噴水池,噴水池的周邊有一圈噴水頭,噴出的水柱為拋物線,在距水池中心3米處達(dá)到最高,高度為5米,且各方向噴出的水柱恰好在噴水池中心的裝飾物處匯合.如圖所示,以水平方向?yàn)?/span>x軸,噴水池中心為原點(diǎn)建立直角坐標(biāo)系.
(1)求水柱所在拋物線(第一象限部分)的函數(shù)表達(dá)式;
(2)王師傅在噴水池內(nèi)維修設(shè)備期間,噴水管意外噴水,為了不被淋濕,身高1.8米的王師傅站立時(shí)必須在離水池中心多少米以內(nèi)?
(3)經(jīng)檢修評(píng)估,游樂園決定對(duì)噴水設(shè)施做如下設(shè)計(jì)改進(jìn):在噴出水柱的形狀不變的前提下,把水池的直徑擴(kuò)大到32米,各方向噴出的水柱仍在噴水池中心保留的原裝飾物(高度不變)處匯合,請(qǐng)?zhí)骄繑U(kuò)建改造后噴水池水柱的最大高度.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)經(jīng)過點(diǎn)A(1,-1)、B(3,3),且當(dāng)1≤x≤3時(shí),-1≤y≤3,則a的取值范圍是___________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,DE⊥AB,BF⊥CD,垂足分別為E,F(xiàn).
(1)求證:△ADE≌△CBF;
(2)求證:四邊形BFDE為矩形.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在
中,
,點(diǎn)
到
兩邊的距離相等,且
.
(1)先用尺規(guī)作出符合要求的點(diǎn)
(保留作圖痕跡,不需要寫作法),然后判斷△ABP的形狀,并說明理由;
(2)設(shè)
,
,試用
、
的代數(shù)式表示
的周長和面積;
(3)設(shè)
與
交于點(diǎn)
,試探索當(dāng)邊
、
的長度變化時(shí),
的值是否發(fā)生變化,若不變,試求出這個(gè)不變的值,若變化,試說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】武警戰(zhàn)士乘一沖鋒舟從
地逆流而上,前往
地營救受困群眾,途經(jīng)
地時(shí),由所攜帶的救生艇將
地受困群眾運(yùn)回
地,沖鋒舟繼續(xù)前進(jìn),到
地接到群眾后立刻返回
地,途中曾與救生艇相遇.沖鋒舟和救生艇距
地的距離
(千米)和沖鋒舟出發(fā)后所用時(shí)間
(分)之間的函數(shù)圖象如圖所示.假設(shè)營救群眾的時(shí)間忽略不計(jì),水流速度和沖鋒舟在靜水中的速度不變.
![]()
(1)請(qǐng)直接寫出沖鋒舟從
地到
地所用的時(shí)間.
(2)求水流的速度.
(3)沖鋒舟將
地群眾安全送到
地后,又立即去接應(yīng)救生艇.已知救生艇與
地的距離
(千米)和沖鋒舟出發(fā)后所用時(shí)間
(分)之間的函數(shù)關(guān)系式為
,假設(shè)群眾上下船的時(shí)間不計(jì),求沖鋒舟在距離
地多遠(yuǎn)處與救生艇第二次相遇?
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com