分析 (1)連接BE,由垂直平分線的性質(zhì)可求得∠EBC=∠ABE=∠A=30°,在Rt△BCE中,由直角三角形的性質(zhì)可證得BE=2CE,則可證得結(jié)論;
(2)由垂直平分線的性質(zhì)可求得CD=BD,且∠ABC=60°,可證明△BCD為等邊三角形.
解答
(1)證明:
連接BE,
∵DE是AB的垂直平分線,
∴AE=BE,
∴∠ABE=∠A=30°,
∴∠CBE=∠ABC-∠ABE=30°,
在Rt△ABC中,BE=2CE,
∴AE=2CE;
(2)解:△BCD是等邊三角形,
理由如下:
∵DE垂直平分AB,
∴D為AB中點(diǎn),
∵∠ACB=90°,
∴CD=BD,
∵∠ABC=60°,
∴△BCD是等邊三角形.
點(diǎn)評(píng) 本題主要考查線段垂直平分線的性質(zhì),掌握線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 4個(gè) | B. | 3個(gè) | C. | 2個(gè) | D. | 1個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com