【題目】已知二元一次方程
,通過列舉將方程的解寫成下列表格的形式:
| -1 |
|
| 5 | 6 |
| 6 | 5 |
| 0 |
|
如果將二元一次方程的解所包含的未知數(shù)
的值對應(yīng)直角坐標(biāo)系中一個點(diǎn)的橫坐標(biāo),未知數(shù)
的值對應(yīng)這個點(diǎn)的縱坐標(biāo),這樣每一個二元一次方程的解,就可以對應(yīng)直角坐標(biāo)系中的一個點(diǎn),例如:方程
的解
的對應(yīng)點(diǎn)是
.
(1)表格中的
________,
___________;
(2)通過以上確定對應(yīng)點(diǎn)坐標(biāo)的方法,將表格中給出的五個解依次轉(zhuǎn)化為對應(yīng)點(diǎn)的坐標(biāo),并在所給的直角坐標(biāo)系中畫出這五個點(diǎn);根據(jù)這些點(diǎn)猜想方程
的解的對應(yīng)點(diǎn)所組成的圖形是_________,并寫出它的兩個特征①__________,②_____________;
(3)若點(diǎn)
好落在
的解對應(yīng)的點(diǎn)組成的圖形上,求
的值.
![]()
【答案】(1)0,-1;(2)見解析;(3)-6.
【解析】
(1)根據(jù)題意,將m和n代入方程即可得解;
(2)將每個對應(yīng)點(diǎn)的坐標(biāo)在直角坐標(biāo)系中進(jìn)行描點(diǎn),即可得出圖形,然后觀察其特征即可;
(3)將點(diǎn)P代入即可得出
的值.
(1)根據(jù)表格,得
,![]()
∴m=0,n=-1;
(2)如圖所示,即為所求:
![]()
該圖形是一條直線;
①經(jīng)過第一、二、四象限;②與y軸交于點(diǎn)(0,5)(答案不唯一);
(3)把x=﹣2a,y= a-1代入方程x+y=5中,得
-2a+(a-1)=5,
解之,得a=-6.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場老板對一種新上市商品的銷售情況進(jìn)行記錄,已知這種商品進(jìn)價為每件40元,經(jīng)過記錄分析發(fā)現(xiàn),當(dāng)銷售單價在40元至90元之間(含40元和90元)時,每月的銷售量y(件)與銷售單價x(元)之間的關(guān)系可近似地看作一次函數(shù),其圖象如圖所示.
(1)求y與x的函數(shù)關(guān)系式.
(2)設(shè)商場老板每月獲得的利潤為P(元),求P與x之間的函數(shù)關(guān)系式;
(3)如果想要每月獲得2400元的利潤,那么銷售單價應(yīng)定為多少元?
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】校車安全是近幾年社會關(guān)注的重大問題,安全隱患主要是超速和超載.某中學(xué)數(shù)學(xué)活動小組設(shè)計了如下檢測公路上行駛的汽車速度的實(shí)驗:先在公路旁邊選取一點(diǎn)C,再在筆直的車道
上確定點(diǎn)D,使CD與
垂直,測得CD的長等于21米,在
上點(diǎn)D的同側(cè)取點(diǎn)A、B,使∠CAD=300,∠CBD=600.
(1)求AB的長(精確到0.1米,參考數(shù)據(jù):
);
(2)已知本路段對校車限速為40千米/小時,若測得某輛校車從A到B用時2秒,這輛校車是否超速?說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“十字相乘法”能把二次三項式分解因式,對于形如ax2+bxy+cy2的關(guān)于x,y的二次三項式來說,方法的關(guān)鍵是把x2項系數(shù)a分解成兩個因數(shù)a1,a2的積,即a=a1a2,把y2項系數(shù)c分解成兩個因數(shù)c1,c2的積,即c=c1c2,并使a1c2+a2c1正好等于xy項的系數(shù)b,那么可以直接寫成結(jié)果:ax2+bxy+cy2=(a1x+c1y)(a2x+c2y).
例:分解因式:x2﹣2xy﹣8y2.
解:如圖1,其中1=1×1,﹣8=(﹣4)×2,而﹣2=1×2+1×(﹣4).
∴x2﹣2xy﹣8y2=(x﹣4y)(x+2y)
而對于形如ax2+bxy+cy2+dx+ey+f的x,y的二元二次式也可以用十字相乘法來分解,如圖2,將a分解成mn乘積作為一列,c分解成pq乘積作為第二列,f分解成jk乘積作為第三列,如果mq+np=b,pk+qj=e,mk+nj=d,即第1,2列、第2,3列和第1,3列都滿足十字相乘規(guī)則,則原式=(mx+py+j)(nx+qy+k);
例:分解因式:x2+2xy﹣3y2+3x+y+2
解:如圖3,其中1=1×1,﹣3=(﹣1)×3,2=1×2;
而2=1×3+1×(﹣1),1=(﹣1)×2+3×1,3=1×2+1×1;
∴x2+2xy﹣3y2+3x+y+2=(x﹣y+1)(x+3y+2)
請同學(xué)們通過閱讀上述材料,完成下列問題:
(1)分解因式:
①6x2﹣17xy+12y2=
②2x2﹣xy﹣6y2+2x+17y﹣12=
③x2﹣xy﹣6y2+2x﹣6y=
(2)若關(guān)于x,y的二元二次式x2+7xy﹣18y2﹣5x+my﹣24可以分解成兩個一次因式的積,求m的值.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,這是一個供滑板愛好者使用的
型池的示意圖,該
型池可以看成是長方體去掉一個“半圓柱”而成,中間可供滑行部分的截面是直徑為
的半圓,其邊緣
,點(diǎn)
在
上,
,一滑板愛好者從
點(diǎn)滑到
點(diǎn),則他滑行的最短距離約為_________
.(邊緣部分的厚度忽略不計)
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在平面直角坐標(biāo)系中,四邊形ABCD是菱形,其中B點(diǎn)坐標(biāo)是(8,2),D點(diǎn)坐標(biāo)是(0,2),點(diǎn)A在x軸上,則菱形ABCD的周長是( )
![]()
A.2![]()
B.8
C.8![]()
D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電視臺的一檔娛樂性節(jié)目中,在游戲PK環(huán)節(jié),為了隨機(jī)分選游戲雙方的組員,主持人設(shè)計了以下游戲:用不透明的白布包住三根顏色長短相同的細(xì)繩AA1、BB1、CC1,只露出它們的頭和尾(如圖所示),由甲、乙兩位嘉賓分別從白布兩端各選一根細(xì)繩,并拉出,若兩人選中同一根細(xì)繩,則兩人同隊,否則互為反方隊員.
(1)若甲嘉賓從中任意選擇一根細(xì)繩拉出,求他恰好抽出細(xì)繩AA1的概率;
(2)請用畫樹狀圖法或列表法,求甲、乙兩位嘉賓能分為同隊的概率.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們學(xué)過的分解因式的方法有提取公因式法、公式法及十字相乘法,但有很多的多項式只用上述方法就無法分解,如
,我們細(xì)心觀察這個式子就會發(fā)現(xiàn),前兩項符合平方差公式,后兩項可提取公因式,前后兩部分分別分解因式后會產(chǎn)生公因式,然后提取公因式就可以完成整個式子的分解因式了.過程為:
;這種分解因式的方法叫分組分解法.利用這種方法解決下列問題:
(1)分解因式:![]()
(2)
三邊
,
,
滿足
,判斷
的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y1=﹣x﹣1的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,與反比例函數(shù)
圖象的一個交點(diǎn)為M(﹣2,m).
(1)求反比例函數(shù)的解析式;(2)求點(diǎn)B到直線OM的距離.![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com