【題目】如圖,AB為⊙O的直徑,直線(xiàn)1切⊙O于點(diǎn)D,過(guò)點(diǎn)B作BH⊥1于點(diǎn)H,交⊙O于點(diǎn)C,連接BD.
(1)求證:BD平分∠ABH;
(2)若AB=10,BC=6.求點(diǎn)D到AB的距離.
![]()
【答案】(1)見(jiàn)詳解;(2)4.
【解析】
(1)連接OD,由直線(xiàn)
與圓O相切,可知,
,結(jié)合
,可知,
,從而得:
,即可得證;
(2)作
由(1)中的角平分線(xiàn),可知,
;連接AC,可證,四邊形CHDF是矩形,于是
,根據(jù)勾股定理,求出AC,即可得到答案.
(1)∵直線(xiàn)1切⊙O于點(diǎn)D,∴
,又∵
,∴
,∴
,
∵
,∴
,∴
,即,BD平分∠ABH;
(2)如圖,過(guò)點(diǎn)D作
,垂足為點(diǎn)E,
∵BD平分
,BH⊥1,∴
,
連接AC,OD交于點(diǎn)F,
∵AB為⊙O的直徑,直線(xiàn)1切⊙O于點(diǎn)D,
∴
,
∴四邊形
是矩形,
∴
,
,
∴
,即
,
∵
,
∴
,
∴
,即點(diǎn)D到AB的距離為4.
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)圖象如圖,下列結(jié)論:①abc>0;②2a+b=0;③a-b+c>0;④當(dāng)x≠1時(shí),a+b>ax2+bx:⑤4ac<b2.其中正確的有____________(只填序號(hào)).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰△DEF中,DF=EF,FG是△DEF的中線(xiàn),若點(diǎn)Q為△DEF內(nèi)一點(diǎn)且Q滿(mǎn)足∠QDF=∠QED=∠QFE,FQ=9,
=
,則DQ+EQ=( )
![]()
A.10B.
C.6+6
D.7![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果三角形的兩個(gè)內(nèi)角α與β滿(mǎn)足2α+β=90°,那么我們稱(chēng)這樣的三角形為“準(zhǔn)互余三角形”.
(1)若△ABC是“準(zhǔn)互余三角形”,∠C>90°,∠A=60°,則∠B= °;
(2)如圖①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分線(xiàn),不難證明△ABD是“準(zhǔn)互余三角形”.試問(wèn)在邊BC上是否存在點(diǎn)E(異于點(diǎn)D),使得△ABE也是“準(zhǔn)互余三角形”?若存在,請(qǐng)求出BE的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
(3)如圖②,在四邊形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC是“準(zhǔn)互余三角形”,求對(duì)角線(xiàn)AC的長(zhǎng).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果關(guān)于x的一元二次方程ax2+bx+c=0 (a≠0)有兩個(gè)不相等的實(shí)數(shù)根,且其中一個(gè)根為另一個(gè)根的2倍,那么稱(chēng)這樣的方程為“倍根方程”.例如,方程x2-6x+8=0的兩個(gè)根是2和4,則方程x2-6x+8=0就是“倍根方程”.
(1)若一元二次方程x2-3x+c=0是“倍根方程”,則c= ;
(2)若(x-2) (mx-n)=0(m≠0)是“倍根方程”,求代數(shù)式4m2-5mn+n2的值;
(3)若方程ax2+bx+c=0 (a≠0)是倍根方程,且相異兩點(diǎn)M(1+t,s),N(4-t,s),都在拋物線(xiàn)y=ax2+bx+c上,求一元二次方程ax2+bx+c=0 (a≠0)的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC內(nèi)接于⊙O,過(guò)點(diǎn)A作直線(xiàn)EF.
(1)如圖①,AB是直徑,要使EF是⊙O的切線(xiàn),還須添加一個(gè)條件是(只需寫(xiě)出三種情況).
(ī) (īī) (īīī)
(2)如圖(2),若AB為非直徑的弦,∠CAE=∠B,則EF是⊙O的切線(xiàn)嗎?為什么?
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,若O為BC邊的中點(diǎn),則必有:AB2+AC2=2AO2+2BO2成立.依據(jù)以上結(jié)論,解決如下問(wèn)題:如圖,在矩形DEFG中,已知DE=4,EF=3,點(diǎn)P在以DE為直徑的半圓上運(yùn)動(dòng),則
的最小值為________.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于平面直角坐標(biāo)系xOy中的點(diǎn)P和⊙C,給出如下定義:若存在過(guò)點(diǎn)P的直線(xiàn)l交⊙C于異于點(diǎn)P的A,B兩點(diǎn),在P,A,B三點(diǎn)中,位于中間的點(diǎn)恰為以另外兩點(diǎn)為端點(diǎn)的線(xiàn)段的中點(diǎn)時(shí),則稱(chēng)點(diǎn)P為⊙C 的相鄰點(diǎn),直線(xiàn)l為⊙C關(guān)于點(diǎn)P的相鄰線(xiàn).
(1)當(dāng)⊙O的半徑為1時(shí),
①分別判斷在點(diǎn)D(
,
),E(0,﹣
),F(4,0)中,是⊙O的相鄰點(diǎn)有 ;
②請(qǐng)從①中的答案中,任選一個(gè)相鄰點(diǎn),在圖1中做出⊙O關(guān)于它的一條相鄰線(xiàn),并說(shuō)明你的作圖過(guò)程;
③點(diǎn)P與點(diǎn)O的距離d滿(mǎn)足范圍___________________時(shí),點(diǎn)P是⊙O的相鄰點(diǎn);
④點(diǎn)P在直線(xiàn)y=﹣x+3上,若點(diǎn)P為⊙O的相鄰點(diǎn),求點(diǎn)P橫坐標(biāo)x的取值范圍;
(2)⊙C的圓心在x軸上,半徑為1,直線(xiàn)y=﹣
x+2
與x軸,y軸分別交于點(diǎn)M,N,若線(xiàn)段MN上存在⊙C的相鄰點(diǎn)P,直接寫(xiě)出圓心C的橫坐標(biāo)x的取值范圍.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC是等邊三角形,以AB為直徑作⊙O,交BC邊于點(diǎn)D,交AC邊于點(diǎn)F,作DE⊥AC于點(diǎn)E.
(1)求證:DE是⊙O的切線(xiàn);
(2)若△ABC的邊長(zhǎng)為4,求EF的長(zhǎng)度.
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com