如圖,圓內(nèi)接四邊形ABDC,AB是⊙O的直徑,OD⊥BC于E.
![]()
(1)求證:∠BCD=∠CBD;
(2)若BE=4,AC=6,求DE的長.
(1)詳見解析;(2)2.
【解析】
試題分析:(1)由題目條件OD⊥BC于E,可知OD平分弧BC(垂徑定理),即弧BD=弧CD,∠BCD是弧BD所對(duì)的圓周角,∠CBD是弧CD所對(duì)的圓周角,由圓周角定理,同弧或等弧所對(duì)的圓周角相等可以得到∠BCD=∠CBD;(2) 由題目條件OD⊥BC于E,可知OD平分弦BC(垂徑定理),即BE= CE=4,所以BC=8,因?yàn)锳B是⊙O的直徑,所以∠C為直角,在Rt△ACB中,AC=6,BC=8,由勾股定理,AB=10,OB=5,在Rt△OEB中,OB=5,BE=4,由勾股定理,OE=3,DE=OD-OE=2.
試題解析:(1)∵OD⊥BC于E,
∴OD平分弧BC(垂徑定理),即弧BD=弧CD,
又∵∠BCD是弧BD所對(duì)的圓周角,∠CBD是弧CD所對(duì)的圓周角,
由圓周角定理知∠BCD=∠CBD.
(2) ∵OD⊥BC于E,
∴OD平分弦BC(垂徑定理),即BE= CE=4,BC=8,
∵AB是⊙O的直徑,
∴∠C為直角,
在Rt△ACB中,AC=6,BC=8,由勾股定理,AB=10,OB=5,
在Rt△OEB中,OB=5,BE=4,由勾股定理,OE=3,DE=OD-OE=2.
考點(diǎn):1.圓周角定理和垂徑定理;2.垂徑三角形三邊的關(guān)系.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
| A、4 | ||
| B、2 | ||
C、
| ||
D、
|
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com