【題目】已知:如圖,點(diǎn)C是以AB為直徑的⊙O上一點(diǎn),直線AC與過B點(diǎn)的切線相交于D,點(diǎn)E是BD的中點(diǎn),直線CE交直線AB于點(diǎn)F.
(1)求證:CF是⊙O的切線;
(2)若ED=3,EF=5,求⊙O的半徑.
![]()
【答案】(1)證明見解析;(2)6.
【解析】
(1)連CB、OC,根據(jù)切線的性質(zhì)得∠ABD=90°,根據(jù)圓周角定理由AB是直徑得到∠ACB=90°,即∠BCD=90°,則根據(jù)直角三角形斜邊上的中線性質(zhì)得CE=BE,于是得到∠OBC+∠CBE=∠OCB+∠BCE=90°,然后根據(jù)切線的判定定理得CF是⊙O的切線;
(2)CE=BE=DE=3,于是得到CF=CE+EF=4,然后根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.
(1)證明:連接
,
,
∵
為⊙O的切線,
是⊙O的直徑,
∴
,
.
∴
.
∴
.
∵
為
的中點(diǎn),
∴
.
∴
.
又∵![]()
∴
.
∴
.
∴
是⊙O的切線.
![]()
(2)解:∵
,![]()
∴![]()
∵
,
∴
,
∵
,
∴
,
∵
,
∴
∽![]()
∴
,
∴
,
∴
,即⊙O的半徑為6
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知直線y=﹣
x+m與反比例函數(shù)y=
的圖象在第一象限內(nèi)交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),分別與x、y軸交于點(diǎn)C、D,AE⊥x軸于E.
(1)若OECE=12,求k的值.
(2)如圖2,作BF⊥y軸于F,求證:EF∥CD.
(3)在(1)(2)的條件下,EF=
, AB=2
,P是x軸正半軸上的一點(diǎn),且△PAB是以P為直角頂點(diǎn)的等腰直角三角形,求P點(diǎn)的坐標(biāo).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠ABC=120°,將菱形折疊,使點(diǎn)A恰好落在對(duì)角線BD上的點(diǎn)G處(不與B、D重合),折痕為EF,若DG=2,BG=6,則BE的長為______.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)完二次函數(shù)的圖像及其性質(zhì)后,老師讓學(xué)生們說出
的圖像的一些性質(zhì),小亮說:“此函數(shù)圖像開口向上,且對(duì)稱軸是
”;小麗說:“此函數(shù)肯定與x軸有兩個(gè)交點(diǎn)”;小紅說:“此函數(shù)與y軸的交點(diǎn)坐標(biāo)為(0,-3)”;小強(qiáng)說:“此函數(shù)有最小值,
”……請(qǐng)問這四位同學(xué)誰說的結(jié)論是錯(cuò)誤的( )
A. 小亮 B. 小麗 C. 小紅 D. 小強(qiáng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近幾年杭州市推出了“微公交”,“微公交”是國內(nèi)首創(chuàng)的純電動(dòng)汽車租賃服務(wù).它作為一種綠色出行方式,對(duì)緩解交通堵塞和停車?yán)щy,改善城市大氣環(huán)境,都可以起到積極作用.據(jù)了解某租賃點(diǎn)擁有“微公交”
輛.據(jù)統(tǒng)計(jì),當(dāng)每輛車的年租金為
千元時(shí)可全部租出;每輛車的年租金每增加
千元,未租出的車將增加
輛.
(1)當(dāng)每輛車的年租金定為
千元時(shí),能租出多少輛?
(2)當(dāng)每輛車的年租金增加多少千元時(shí),租賃公司的年收益(不計(jì)車輛維護(hù)等其他費(fèi)用)可達(dá)到
千元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,點(diǎn)
在第一象限,
軸于
,
軸于
,
,
,有一反比例函數(shù)圖象剛好過點(diǎn)
.
![]()
(1)分別求出過點(diǎn)
的反比例函數(shù)和過
,
兩點(diǎn)的一次函數(shù)的函數(shù)表達(dá)式;
(2)直線
軸,并從
軸出發(fā),以每秒
個(gè)單位長度的速度向
軸正方向運(yùn)動(dòng),交反比例函數(shù)圖象于點(diǎn)
,交
于點(diǎn)
,交直線
于點(diǎn)
,當(dāng)直線
運(yùn)動(dòng)到經(jīng)過點(diǎn)
時(shí),停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為
(秒).
①問:是否存在
的值,使四邊形
為平行四邊形?若存在,求出
的值;若不存在,說明理由;
②若直線
從
軸出發(fā)的同時(shí),有一動(dòng)點(diǎn)
從點(diǎn)
出發(fā),沿射線
方向,以每秒
個(gè)單位長度的速度運(yùn)動(dòng).是否存在
的值,使以點(diǎn)
,
,
,
為頂點(diǎn)的四邊形為平行四邊形;若存在,求出
的值,并進(jìn)一步探究此時(shí)的四邊形是否為特殊的平行四邊形;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2﹣2(m+1)x+m2﹣3=0.
(1)當(dāng)m取何值時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根?
(2)設(shè)x1、x2是方程的兩根,且(x1+x2)2﹣(x1+x2)﹣12=0,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2+2x﹣1.
(1)寫出它的頂點(diǎn)坐標(biāo);
(2)當(dāng)x取何值時(shí),y隨x的增大而增大;
(3)當(dāng)x取何值時(shí)y的值大于0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖為一座拋物線型的拱橋,AB、CD分別表示兩個(gè)不同位置的水面寬度,O為拱橋頂部,水面AB寬為10米,AB距橋頂O的高度為12.5米,水面上升2.5米到達(dá)警戒水位CD位置時(shí),水面寬為( )米.
A. 5 B. 2
C. 4
D. 8
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com