分析 (1)將P的坐標(biāo)代入雙曲線中求出m的值,然后將P的坐標(biāo)代入直線解析式中求出k的值.
(2)求出P關(guān)于y=x的對(duì)稱(chēng)點(diǎn)Q,然后利用待定系數(shù)法求出直線PQ的解析式,然后求出點(diǎn)B的坐標(biāo),最后利用S△APQ=S△APB-S△AQB即可求出答案.
解答 解:(1)將x=1代入y=$\frac{2}{x}$,
∴y=2,
∴P(1,2)
∴將P(1,2)代入y=kx+1
∴k=1,
(2)易知P(1,2)關(guān)于直線y=x的對(duì)稱(chēng)點(diǎn)為Q(2,1)
設(shè)直線PQ的解析式為:y=kx+b,
將P、Q的坐標(biāo)代入上式,
∴$\left\{\begin{array}{l}{2=k+b}\\{1=2k+b}\end{array}\right.$
解得:$\left\{\begin{array}{l}{k=-1}\\{b=3}\end{array}\right.$
∴直線PQ的解析式為:y=-x+3
設(shè)直線PQ與x軸交于點(diǎn)B,
∴令y=0代入y=-x+3
∴x=3,
∴B(3,0)
∴S△APQ=S△APB-S△AQB
=$\frac{1}{2}$×4×(2-1)
=2
點(diǎn)評(píng) 本題考查反比例函數(shù)與一次函數(shù)的綜合問(wèn)題,解題的關(guān)鍵是熟練運(yùn)用待定系數(shù)法,本題屬于中等題型.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com