如圖1,若△ABC和△ADE為等邊三角形,M,N分別EB,CD的中點,易證:CD=BE,△AMN是等邊三角形.
(1)當把△ADE繞A點旋轉(zhuǎn)到圖2的位置時,CD=BE是否仍然成立?若成立請證明,若不成立請說明理由;
(2)當△ADE繞A點旋轉(zhuǎn)到圖3的位置時,△AMN是否還是等邊三角形?若是,請給出證明,并求出當AB=2AD時,△ADE與△ABC及△AMN的面積之比;若不是,請說明理由.
解:(1)CD=BE.理由如下:
∵△ABC和△ADE為等邊三角形
∴AB=AC,AE=AD,∠BAC=∠EAD=60o
∵∠BAE =∠BAC-∠EAC =60o-∠EAC,
∠DAC =∠DAE-∠EAC =60o-∠EAC,
∴∠BAE=∠DAC, ∴△ABE ≌ △ACD
∴CD=BE
(2)△AMN是等邊三角形.理由如下:
∵△ABE ≌ △ACD, ∴∠ABE=∠ACD.
∵M、N分別是BE、CD的中點,
∴BM=![]()
∵AB=AC,∠ABE=∠ACD, ∴△ABM ≌ △ACN.
∴AM=AN,∠MAB=∠NAC.
∴∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60o
∴△AMN是等邊三角形.
設(shè)AD=a,則AB=2a.
∵AD=AE=DE,AB=AC, ∴CE=DE.
∵△ADE為等邊三角形, ∴∠DEC=120 o, ∠ADE=60o,
∴∠EDC=∠ECD=30o , ∴∠ADC=90o.
∴在Rt△ADC中,AD=a,∠ACD=30 o , ∴ CD=
.
∵N為DC中點,
∴
, ∴
.
∵△ADE,△ABC,△AMN為等邊三角形,
∴S△ADE∶S△ABC∶ S△AMN![]()
解法二:△AMN是等邊三角形.理由如下:
∵△ABE ≌ △ACD,M、N分別是BE、CN的中點,∴AM=AN,NC=MB.
∵AB=AC,∴△ABM ≌ △ACN,∴∠MAB=∠NAC ,
∴∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60o
∴△AMN是等邊三角形
設(shè)AD=a,則AD=AE=DE= a,AB=BC=AC=2a
易證BE⊥AC,∴BE=
,
∴
∴![]()
∵△ADE,△ABC,△AMN為等邊三角形
∴S△ADE∶S△ABC∶ S△AMN![]()
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com