分析 (1)先證明△CDA是等腰三角形,再根據(jù)等腰三角形的性質(zhì)證明AM+CK=MK;在△MKD中,AM+CK>MK(兩邊之和大于第三邊);
(2)作點(diǎn)C關(guān)于FD的對(duì)稱點(diǎn)G,連接GK,GM,GD.證明△ADM≌△GDM后,根據(jù)全等三角形的性質(zhì)可得GM=AM,GM+GK>MK,從而得到AM+CK>MK;
(3)根據(jù)勾股定理的逆定理求得∠GKM=90°,又由點(diǎn)C關(guān)于FD的對(duì)稱點(diǎn)G,得到∠CKG=90°,∠FKC=$\frac{1}{2}$∠CKG=45°,根據(jù)三角形的外角定理,就可以求得∠CDF=15°.
解答 解:(1)①在Rt△ABC中,D是AB的中點(diǎn),
∴AD=BD=CD=$\frac{1}{2}$AB,∠B=∠BDC=60°
又∵∠A=30°,
∴∠ACD=60°-30°=30°,
又∵∠CDE=60°,或∠CDF=60°時(shí),
∴∠CKD=90°,
∴在△CDA中,AM(K)=CM(K),即AM(K)=KM(C)(等腰三角形底邊上的垂線與中線重合),
∵CK=0,或AM=0,
∴AM+CK=MK;
②由①,得
∠ACD=30°,∠CDB=60°,
又∵∠A=30°,∠CDF=30°,∠EDF=60°,
∴∠ADM=30°,
∴AM=MD,CK=KD,
∴AM+CK=MD+KD,
∴在△MKD中,AM+CK>MK(兩邊之和大于第三邊),
故答案為:①=;②>;
(2)>,
證明:連接GK,![]()
∵點(diǎn)G是點(diǎn)A關(guān)于直線DE的對(duì)稱點(diǎn)
∴AD=GD,GM=AM,∠GDM=∠ADM,
∵Rt△ABC 中,D是AB的中點(diǎn),
∴AD=CD=GD.
∵∠A=∠E=30°,
∴∠CDA=120°,∠EDF=60°,
∴∠GDM+∠GDK=60°,∠ADM+∠CDK=60°,
∴∠GDK=∠CDK,
在△GDK和△CDK中,
$\left\{\begin{array}{l}GD=CD\\∠GDK=∠CDK\\ DK=DK\end{array}\right.$,
∴△GDK≌△CDK,
∴GK=CK,
∵GM+GK>MK,
∴AM+CK>MK;
(3)∠CDF=15°,
由(2),得GM=AM,GK=CK,
∵M(jìn)K2+CK2=AM2,
∴MK2+GK2=GM2,
∴∠GKM=90°,
又∵點(diǎn)C關(guān)于FD的對(duì)稱點(diǎn)G,
∴∠CKG=90°,∠FKC=$\frac{1}{2}$∠CKG=45°,
又∵由(1),得∠A=∠ACD=30°,
∴∠FKC=∠CDF+∠ACD,
∴∠CDF=∠FKC-∠ACD=15°.
點(diǎn)評(píng) 本題綜合考查了全等三角形的判定、全等三角形的性質(zhì)、軸對(duì)稱圖形的性質(zhì)以及三角形的兩邊之和大于第三邊的性質(zhì).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com