分析 (1)由平行線的性質(zhì)和角平分線定義得出∠ABD=∠ADB,證出AB=AD,同理:AB=BC,得出AD=BC,證出四邊形ABCD是平行四邊形,即可得出結(jié)論;
(2)由菱形的性質(zhì)得出AC⊥BD,OD=OB=$\frac{1}{2}$BD=3,再由三角函數(shù)即可得出AD的長(zhǎng).
解答 (1)證明:∵AE∥BF,
∴∠ADB=∠CBD,
又∵BD平分∠ABF,
∴∠ABD=∠CBD,
∴∠ABD=∠ADB,
∴AB=AD,
同理:AB=BC,
∴AD=BC,
∴四邊形ABCD是平行四邊形,
又∵AB=AD,
∴四邊形ABCD是菱形;
(2)解:∵四邊形ABCD是菱形,BD=6,
∴AC⊥BD,OD=OB=$\frac{1}{2}$BD=3,
∵∠ADB=30°,
∴cos∠ADB=$\frac{OD}{AD}$=$\frac{\sqrt{3}}{2}$,
∴AD=$\frac{3}{\frac{\sqrt{3}}{2}}$=2$\sqrt{3}$.
點(diǎn)評(píng) 本題考查了菱形的判定與性質(zhì)、平行線的性質(zhì)、等腰三角形的判定、平行四邊形的判定、三角函數(shù)等知識(shí);熟練掌握菱形的判定與性質(zhì)是解決問(wèn)題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | a(m+n)=am+an | B. | a2-b2-c2=(a-b)(a+b)-c2 | ||
| C. | 10x2-5x=5x(2x-1) | D. | x2-16+6x=(x+4)(x-4)+6x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | ①② | B. | ①③ | C. | ②④ | D. | ③④ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com