45
分析:根據(jù)線段垂直平分線上的點到線段兩端點的距離相等可得AE=BE,然后求出△ABE是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)求出∠BAC=∠ABE=45°,再根據(jù)等腰三角形兩底角相等求出∠ABC,然后求出∠CBE,根據(jù)等腰三角形三線合一的性質(zhì)可得BF=CF,根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得BF=EF,根據(jù)等邊對等角求出∠BEF=∠CBE,然后根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和列式計算即可得解.
解答:∵DE垂直平分AB,
∴AE=BE,
∵BE⊥AC,
∴△ABE是等腰直角三角形,
∴∠BAC=∠ABE=45°,
又∵AB=AC,
∴∠ABC=

(180°-∠BAC)=

(180°-45°)=67.5°,
∴∠CBE=∠ABC-∠ABE=67.5°-45°=22.5°,
∵AB=AC,AF⊥BC,
∴BF=CF,
∴BF=EF,
∴∠BEF=∠CBE=22.5°,
∴∠EFC=∠BEF+∠CBE=22.5°+22.5°=45°.
故答案為:45.
點評:本題考查了等腰三角形三線合一的性質(zhì),等腰三角形兩底角相等的性質(zhì),線段垂直平分線上的點到線段兩端點的距離相等的性質(zhì),直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),熟記各性質(zhì)并求出△ABE是等腰直角三角形是解題的關(guān)鍵.