已知:如圖,AB為⊙O的直徑,AB⊥AC,BC交⊙O于D,E是AC的中點(diǎn),ED與AB的延長(zhǎng)線相交于點(diǎn)F.
(1)求證:DE為⊙O的切線.
(2)求證:AB:AC=BF:DF.
![]()
考點(diǎn):
切線的判定;相似三角形的判定與性質(zhì).
專題:
證明題.
分析:
(1)連接OD、AD,求出CDA=∠BDA=90°,求出∠1=∠4,∠2=∠3,推出∠4+∠3=∠1+∠2=90°,根據(jù)切線的判定推出即可;
(2)證△ABD∽△CAD,推出
=
,證△FAD∽△FDB,推出
=
,即可得出AB:AC=BF:DF.
解答:
證明:(1)連結(jié)DO、DA,
∵AB為⊙O直徑,
∴∠CDA=∠BDA=90°,
∵CE=EA,
∴DE=EA,
∴∠1=∠4,
∵OD=OA,
∴∠2=∠3,
∵∠4+∠3=90°,
∴∠1+∠2=90°,
即:∠EDO=90°,
∵OD是半徑,
∴DE為⊙O的切線;
(2)∵∠3+∠DBA=90°,∠3+∠4=90°,
∴∠4=∠DBA,
∵∠CDA=∠BDA=90°,
∴△ABD∽△CAD,
∴
=
,
∵∠FDB+∠BDO=90°,∠DBO+∠3=90°,
又∵OD=OB,
∴∠BDO=∠DBO,
∴∠3=∠FDB,
∵∠F=∠F,
∴△FAD∽△FDB,
∴
=
,
∴
=
,
即AB:AC=BF:DF.
![]()
點(diǎn)評(píng):
本題考查了切線的判定,圓周角定理,相似三角形的性質(zhì)和判定的應(yīng)用,主要考查學(xué)生的推理能力,題目比較典型,是一道比較好的題目.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
| 3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
| AD |
| DC |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com