如圖,線段AB與⊙O相切于點(diǎn)C,連接OA、OB,OB交⊙O于點(diǎn)D,已知OA=OB,∠AOB=120°,⊙O的半徑為4cm,求陰影部分的面積.

解:連接OC、CD.…
∵AB與⊙O相切于點(diǎn)C,∴OC⊥AB.
∴∠OCB=90°,…
∵OA=OB,∠AOB=120°,
∴∠COB=

∠AOB=60°,…
∴∠B=30°.∵OC=OD,∠COB=60°,
∴△OCD是等邊三角形.
∴OD=OC=CD=4cm,∠OCD=60°.…
∴∠DCB=∠B=30°.∴DB=DC=4cm.
∴OB=8cm.…
在Rt△OBC中,BC=

=4

cm.…
∴S
陰影=S
△OBC-S
扇形OCD=

×4

×4-

×π×4
2=(8

-

)cm
2.…
分析:根據(jù)已知線段AB與⊙O相切于點(diǎn)C,連接OC、CD,即可得出△OCD是等邊三角形,進(jìn)而求出OB=8cm,利用S
陰影=S
△OBC-S
扇形OCD求出即可.
點(diǎn)評(píng):此題主要考查了扇形的面積公式應(yīng)用,根據(jù)已知得出S
陰影=S
△OBC-S
扇形OCD是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:初中數(shù)學(xué)
來(lái)源:
題型:

如圖,線段AB與⊙O相切于點(diǎn)C,連接OA,OB,OB交⊙O于點(diǎn)D,已知OA=OB=6,AB=6
.
(1)求⊙O的半徑;
(2)求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué)
來(lái)源:
題型:

1、判斷題:
(1)在平面內(nèi),過(guò)直線外一點(diǎn)有且只有一條直線與已知直線垂直(
√
)
(2)過(guò)直線上一點(diǎn)不存在直線與已知直線垂直. (
×
)
(3)過(guò)直線l外一點(diǎn)A作l的垂線,垂線的長(zhǎng)度叫做點(diǎn)A到直線l的距離.(
×
)
(4)一條線段有無(wú)數(shù)條垂線.(
√
)
(5)如圖,線段AB與線段CD不可能互相垂直,因?yàn)樗鼈儾豢赡芟嘟唬?div id="8b4fqoz" class="quizPutTag">×
)
(6)互相垂直的兩條直線形成的四個(gè)角都等于90°. (
√
)
查看答案和解析>>
科目:初中數(shù)學(xué)
來(lái)源:
題型:

如圖,線段AB與⊙O相切于點(diǎn)C,連接OA,OB,已知OA=OB=5cm,AB=8cm,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué)
來(lái)源:
題型:

22、如圖,線段AB與線段CD相交于點(diǎn)O,連接AC、BD,若AC∥BD,∠C=40°,求∠D的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué)
來(lái)源:
題型:
如圖,線段AB與A′B′(AB=A′B′)不關(guān)于直線l成軸對(duì)稱的是 ( )
查看答案和解析>>