已知△ABC中,邊BC的長(zhǎng)與BC邊上的高的和為20.
(1)寫出△ABC的面積y與BC的長(zhǎng)x之間的函數(shù)關(guān)系式,并求出面積為48時(shí)BC的長(zhǎng);
(2)當(dāng)BC多長(zhǎng)時(shí),△ABC的面積最大?最大面積是多少?
(3)當(dāng)△ABC面積最大時(shí),是否存在其周長(zhǎng)最小的情形?如果存在,請(qǐng)說出理由,并求出其最小周長(zhǎng);如果不存在,請(qǐng)給予說明.
解:(1)由題意,得
。
當(dāng)y=48時(shí),
=48,解得:x1=12,x2=8。
∴面積為48時(shí)BC的長(zhǎng)為12或8。
(2)∵
,
∴當(dāng)x=10時(shí),y最大=50。
(3)△ABC面積最大時(shí),△ABC的周長(zhǎng)存在最小的情形。理由如下:
由(2)可知△ABC的面積最大時(shí),BC=10,BC邊上的高也為10。
過點(diǎn)A作直線L平行于BC,作點(diǎn)B關(guān)于直線L的對(duì)稱點(diǎn)B′,連接B′C 交直線L于點(diǎn)A′,連接A′B,AB′,
![]()
則由對(duì)稱性得:A′B′=A′B,AB′=AB,
∴A′B+A′C=A′B′+A′C=B′C,
當(dāng)點(diǎn)A不在線段B′C上時(shí),則由三角形三邊關(guān)系可得:
△ABC的周=AB+AC+BC=AB′+AC+BC>B′C+BC,
當(dāng)點(diǎn)A在線段B′C上時(shí),即點(diǎn)A與A′重合,這時(shí)
△ABC的周長(zhǎng)=AB+AC+BC=A′B′+A′C+BC=B′C+BC,
因此當(dāng)點(diǎn)A與A′重合時(shí),△ABC的周長(zhǎng)最小。
這時(shí)由作法可知:BB′=20,∴
。
∴△ABC的周長(zhǎng)=
+10。
因此當(dāng)△ABC面積最大時(shí),存在其周長(zhǎng)最小的情形,最小周長(zhǎng)為
+10。
【解析】
試題分析:(1)先表示出BC邊上的高,再根據(jù)三角形的面積公式就可以表示出表示y與x之間的函數(shù)關(guān)系式,當(dāng)y=48時(shí)代入解析式就可以求出其值;
(2)將(1)的解析式轉(zhuǎn)化為頂點(diǎn)式就可以求出最大值。
(3)由(2)可知△ABC的面積最大時(shí),BC=10,BC邊上的高也為10過點(diǎn)A作直線L平行于BC,作點(diǎn)B關(guān)于直線L的對(duì)稱點(diǎn)B′,連接B′C 交直線L于點(diǎn)A′,再連接A′B,AB′,根據(jù)軸對(duì)稱的性質(zhì)及三角形的周長(zhǎng)公式就可以求出周長(zhǎng)的最小值。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年山東省聊城市中考數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:山東省中考真題 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com