分析 求出∠AOA′,根據(jù)扇形的面積公式求出扇形AOA′的面積,求出OC、DC長,求出△ODC的面積,根據(jù):陰影部分的面積即為扇形OAA′的面積減去三角形OCD的面積計(jì)算可得.
解答 解:如圖,記45°角的三角板直角頂點(diǎn)為D,![]()
在Rt△OBA中,∠AOB=30°,AB=3,
∴OA=$\frac{AB}{sin∠AOB}$=$\frac{3}{\frac{1}{2}}$=6,
∴OB=OA•cos∠AOB=6×$\frac{\sqrt{3}}{2}$=3$\sqrt{3}$.
由題意得:∠AOC=60°,
S扇形AOA′=$\frac{60•π•{6}^{2}}{360}$=6π.
在Rt△OCD中,∠DOC=45°,OC=OB=3$\sqrt{3}$,
∴OD=OC•cos45°=3$\sqrt{3}$×$\frac{\sqrt{2}}{2}$=$\frac{3\sqrt{6}}{2}$.
∴S△ODC=$\frac{1}{2}$OD2=$\frac{1}{2}$×$(\frac{3\sqrt{6}}{2})^{2}$=$\frac{27}{4}$.
∴S陰影=S扇形AOA′-S△ODC=6π-$\frac{27}{4}$,
故答案為:6π-$\frac{27}{4}$.
點(diǎn)評(píng) 本題主要考查扇形面積的計(jì)算、解直角三角形的能力,在求陰影部分的面積時(shí),常常是幾個(gè)規(guī)則圖形面積的和或差.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{9\sqrt{3}}{10}$cm | B. | $\frac{18\sqrt{3}}{10}$cm | C. | $\frac{9\sqrt{3}}{5}$cm | D. | $\frac{18\sqrt{3}}{5}$cm |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com