分析 (1)連接OC,由等腰三角形的性質(zhì)和角平分線的定義得出∠DAC=∠OCA,于是可判斷OC∥AD,由于AD⊥CD,則OC⊥CD,然后根據(jù)切線的判定定理即可得到結(jié)論;
(2)連接BC,根據(jù)圓周角定理得到∠ACB=90°,由于∠DAC=∠OAC,則可判斷△ACD∽△ABC,然后利用相似比可計(jì)算出CD的長(zhǎng).
解答 (1)證明:連接OC.如圖1所示![]()
∵AC平分∠DAB,
∴∠DAC=∠OAC,
∵OA=OC,
∴∠OCA=∠OAC,
∴∠DAC=∠OCA,
∴DA∥OC,
∵AD⊥DC,
∴∠ADC=90°,
∴∠OCD=90°,
即OC⊥DC,![]()
∵OC為半徑,
∴DC為⊙O的切線.
(2)解:連接BC,如圖2所示:
∵AB是⊙O的直徑,
∴AB=10,∠ACB=90°=∠ADC,
∴AC=$\sqrt{1{0}^{2}-{6}^{2}}$=8,
又∵∠DAC=∠OAC,
∴△ACD∽△ABC,
∴$\frac{CD}{BC}=\frac{AC}{AB}$,即$\frac{CD}{6}=\frac{8}{10}$,
解得:CD=4.8.
點(diǎn)評(píng) 本題考查了切線的判定、等腰三角形的性質(zhì)、平行線的判定與性質(zhì)、圓周角定理、勾股定理、相似三角形的判定與性質(zhì);熟練掌握切線的判定,由圓周角定理證出△ACD∽△ABC是解決問(wèn)題(2)的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 3 | B. | 5 | C. | 7 | D. | 9 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com