分析 (1)用待定系數(shù)法求出拋物線解析式即可;
(2)先求出∠QAP=45°,再分兩種情況用銳角三角函數(shù)計(jì)算即可;
(3)先判斷出四邊形PEFQ是平行四邊形,對(duì)邊相等建立方程求解即可;
(4)先求出MB=$\sqrt{2}$,然后分兩種情況用相似三角形得到比例式,建立方程求解即可.
解答 解:(1)∵y=-x+3與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,
∴當(dāng)y=0時(shí),x=3,即A點(diǎn)坐標(biāo)為(3,0),
當(dāng)x=0時(shí),y=3,即B點(diǎn)坐標(biāo)為(0,3),
將A(3,0),B(0,3)代入y=-x2+bx+c,
∴$\left\{\begin{array}{l}{-9+3b+c=0}\\{c=3}\end{array}\right.$,
∴$\left\{\begin{array}{l}{b=2}\\{c=3}\end{array}\right.$,
∴拋物線y=-x2+2x+3,
(2)∵OA=OB=3,∠BOA=90°,
∴∠QAP=45°.
如圖①所示:![]()
∠PQA=90°時(shí),
設(shè)運(yùn)動(dòng)時(shí)間為t秒,則QA=$\sqrt{2}$t,PA=3-t.
在Rt△PQA中,cos∠QAP$\frac{QA}{PA}=\frac{\sqrt{2}}{2}$,
即:$\frac{\sqrt{2}t}{3-t}=\frac{\sqrt{2}}{2}$,
解得:t=1;
如圖②所示:![]()
∠QPA=90°時(shí),
設(shè)運(yùn)動(dòng)時(shí)間為t秒,則QA=$\sqrt{2}$t,PA=3-t.
在Rt△PQA中,cos∠QAP=$\frac{PA}{QA}=\frac{\sqrt{2}}{2}$,
即:$\frac{3-t}{\sqrt{2}t}=\frac{\sqrt{2}}{2}$,
解得:t=$\frac{3}{2}$.
綜上所述,當(dāng)t=1或t=$\frac{3}{2}$時(shí),△PQA是直角三角形;
(3)如圖③所示:![]()
設(shè)點(diǎn)P的坐標(biāo)為(t,0),則點(diǎn)E的坐標(biāo)為(t,-t+3),
則EP=3-t,點(diǎn)Q的坐標(biāo)為(3-t,t),點(diǎn)F的坐標(biāo)為(3-t,-(3-t)2+2(3-t)+3),
則FQ=3t-t2.
∵EP∥FQ,EF∥PQ,
∴四邊形PEFQ是平行四邊形,
∴EP=FQ.即:3-t=3t-t2.
解得:t1=1,t2=3(舍去).
將t=1代入F(3-t,-(3-t)2+2(3-t)+3),
得點(diǎn)F的坐標(biāo)為(2,3).
(4)如圖④所示:![]()
設(shè)運(yùn)動(dòng)時(shí)間為t秒,則OP=t,BQ=(3-t)$\sqrt{2}$.
∵y=-x2+2x+3=-(x-1)2+4,
∴點(diǎn)M的坐標(biāo)為(1,4).
∴MB=$\sqrt{{1}^{2}+{1}^{2}}$=$\sqrt{2}$.
當(dāng)△BOP∽△QBM時(shí),$\frac{MB}{OP}=\frac{BQ}{OB}$,
即:$\frac{\sqrt{2}}{t}=\frac{(3-t)\sqrt{2}}{3}$,
整理得:t2-3t+3=0,
△=32-4×1×3<0,無(wú)解:
當(dāng)△BOP∽△MBQ時(shí),$\frac{BM}{OB}=\frac{BQ}{OP}$,
即:$\frac{\sqrt{2}}{3}=\frac{(3-t)\sqrt{2}}{t}$,
解得t=$\frac{3}{4}$.
∴當(dāng)t=$\frac{3}{4}$時(shí),以B,Q,M為頂點(diǎn)的三角形與以O(shè),B,P為頂點(diǎn)的三角形相似.
點(diǎn)評(píng) 此題是二次函數(shù)綜合題,主要考查了待定系數(shù)法求拋物線解析式,平行四邊形的判定和性質(zhì),相似三角形的性質(zhì),銳角三角函數(shù)的意義,解本題的關(guān)鍵是建立方程求解.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | x>2 | B. | x<3 | C. | 2<x<3 | D. | 無(wú)解 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 2個(gè) | B. | 3個(gè) | C. | 4個(gè) | D. | 5個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 67.5° | B. | 60° | C. | 45° | D. | 30° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 10 | B. | 13 | C. | 15 | D. | 17 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com