已知:如圖,在直角梯形ABCD中,AD // BC,AB⊥AD,BC = CD,BE⊥CD,垂足為點E,點F在BD上,聯(lián)結(jié)AF、EF.
![]()
1.求證:AD = ED;
2.如果AF // CD,求證:四邊形ADEF是菱形
1.∵BC = CD
∴∠DBC=∠BDC
∵AD // BC
∴∠DBC=∠BDA
∴∠BDC=∠BDA
∵AB⊥AD,BE⊥CD
∴∠BAD=∠BED=90°
在△ABD和△EBD中![]()
∴△ABD≌△EBD
∴AD = ED (4分)
2.∵AF // CD
∴∠AFD=∠FDE
∵△ABD≌△EBD
∴∠ADF=∠FDE
∴∠AFD=∠ADF
∴AF=AD
∵AD = ED
∴AF=ED
∵AF // CD
∴四邊形ADEF是平行四邊形
∵AD = ED
∴四邊形ADEF是菱形 (4分)
【解析】(1)利用AAS證明△ABD≌△EBD,從而證明出AD=ED;
(2)先證明ADEF是平行四邊形,然后從相鄰邊相等得出四邊形是菱形。
科目:初中數(shù)學(xué) 來源:2011年河南省周口市初一下學(xué)期相交線與平行線專項訓(xùn)練 題型:解答題
如圖,以Rt△ABO的直角頂點O為原點,OA所在的直線為x軸,OB所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=4,OB=3,一動點P從O出發(fā)沿OA方向,以每秒1個
單位長度的速度向A點勻速運動,到達(dá)A點后立即以原速沿AO返回;點Q從A點出發(fā)
沿AB以每秒1個單位長度的速度向點B勻速運動.當(dāng)Q到達(dá)B時,P、Q兩點同時停止
運動,設(shè)P、Q運動的時間為t秒(t>0).
![]()
(1) 試求出△APQ的面積S與運動時間t之間的函數(shù)關(guān)系式;
(2) 在某一時刻將△APQ沿著PQ翻折,使得點A恰好落在AB邊的點D處,如圖①.
求出此時△APQ的面積.
(3) 在點P從O向A運動的過程中,在y軸上是否存在著點E使得四邊形PQBE為等腰梯
形?若存在,求出點E的坐標(biāo);若不存在,請說明理由.
(4) 伴隨著P、Q兩點的運動,線段PQ的垂直平分線DF交PQ于點D,交折線QB-BO-OP于點F. 當(dāng)DF經(jīng)過原點O時,請直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011年河南省周口市初一下學(xué)期平移專項訓(xùn)練 題型:解答題
如圖,以Rt△ABO的直角頂點O為原點,OA所在的直線為x軸,OB所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=4,OB=3,一動點P從O出發(fā)沿OA方向,以每秒1個
單位長度的速度向A點勻速運動,到達(dá)A點后立即以原速沿AO返回;點Q從A點出發(fā)
沿AB以每秒1個單位長度的速度向點B勻速運動.當(dāng)Q到達(dá)B時,P、Q兩點同時停止
運動,設(shè)P、Q運動的時間為t秒(t>0).
![]()
(1) 試求出△APQ的面積S與運動時間t之間的函數(shù)關(guān)系式;
(2) 在某一時刻將△APQ沿著PQ翻折,使得點A恰好落在AB邊的點D處,如圖①.
求出此時△APQ的面積.
(3) 在點P從O向A運動的過程中,在y軸上是否存在著點E使得四邊形PQBE為等腰梯
形?若存在,求出點E的坐標(biāo);若不存在,請說明理由.
(4) 伴隨著P、Q兩點的運動,線段PQ的垂直平分線DF交PQ于點D,交折線QB-BO-OP于點F. 當(dāng)DF經(jīng)過原點O時,請直接寫出t的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com