| A. | BC平分∠ABE | B. | AC∥BE | C. | ∠BCD+∠D=90° | D. | ∠DBF=2∠ABC |
分析 由BC⊥BD得到∠CBE+∠DBE=90°,∠BCD+∠D=90°,則可對C選項進行判斷;再由平行線的性質得∠D=∠DBF,由角平分線定義得∠DBF=∠DBE,則∠CBE=∠BCE,而∠ABC=∠BCE,所以∠ABC=∠CBE,則可對A選項進行判斷;接著由BC平分∠ACD得到∠ACB=∠BCE,所以∠ACB=∠CBE,根據平行線的判定即可得到AC∥BE,于是可對B選項進行判斷;利用平行線的性質得到∠DEB=∠ABE=2∠ABC,加上∠D=∠DBE=∠DBF,∠D≠∠BED,于是可得∠DBF≠2∠ABC,則可對D選項進行判斷.
解答 解:∵BC⊥BD,
∴∠CBD=90°,即∠CBE+∠DBE=90°,
∴∠BCD+∠D=90°,所以C選項的結論正確;
∵AF∥CD,
∴∠D=∠DBF,
∵BD平分∠EBF,
∴∠DBF=∠DBE,
∴∠CBE=∠BCE,
∵AB∥CE
∴∠ABC=∠BCE,
∴∠ABC=∠CBE,所以A選項的結論正確;
∵BC平分∠ACD,
∴∠ACB=∠BCE,
∴∠ACB=∠CBE,
∴AC∥BE,所以B選項的結論正確;
∵∠DEB=∠ABE=2∠ABC,
而∠D=∠DBE=∠DBF,
∠D≠∠BED,
∴∠DBF≠2∠ABC,所以D選項的結論錯誤.
故選D.
點評 本題考查了平行線的判定與性質:平行線的判定是由角的數量關系判斷兩直線的位置關系.平行線的性質是由平行關系來尋找角的數量關系.應用平行線的判定和性質定理時,一定要弄清題設和結論,切莫混淆.
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
| A. | 2$\sqrt{13}$ | B. | 1+3$\sqrt{5}$ | C. | 3+$\sqrt{37}$ | D. | $\sqrt{85}$ |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com