如圖,拋物線與x軸交于A(1,0)、B(﹣3,0)兩點,與y軸交于點C(0,3),設拋物線的頂點為D.
![]()
(1)求該拋物線的解析式與頂點D的坐標.
(2)試判斷△BCD的形狀,并說明理由.
(3)探究坐標軸上是否存在點P,使得以P、A、C為頂點的三角形與△BCD相似?若存在,請直接寫出點P的坐標;若不存在,請說明理由.
(1)y=-x2-2x+3,(-1,4);(2)△BCD是直角三角形.理由見解析;(3)存在,p1(0,0)、p2(0,
)、p3(-9,0).
【解析】
試題分析:(1)利用待定系數(shù)法即可求得函數(shù)的解析式;
(2)利用勾股定理求得△BCD的三邊的長,然后根據(jù)勾股定理的逆定理即可作出判斷;
(3)分p在x軸和y軸兩種情況討論,舍出P的坐標,根據(jù)相似三角形的對應邊的比相等即可求解.
試題解析:(1)設拋物線的解析式為y=ax2+bx+c
由拋物線與y軸交于點C(0,3),可知c=3.即拋物線的解析式為y=ax2+bx+3.
把點A(1,0)、點B(-3,0)代入,得
![]()
解得a=-1,b=-2
∴拋物線的解析式為y=-x2-2x+3.
∵y=-x2-2x+3=-(x+1)2+4
∴頂點D的坐標為(-1,4);
(2)△BCD是直角三角形.理由如下:
解法一:過點D分別作x軸、y軸的垂線,垂足分別為E、F.
![]()
∵在Rt△BOC中,OB=3,OC=3,
∴BC2=OB2+OC2=18
在Rt△CDF中,DF=1,CF=OF-OC=4-3=1,
∴CD2=DF2+CF2=2
在Rt△BDE中,DE=4,BE=OB-OE=3-1=2,
∴BD2=DE2+BE2=20
∴BC2+CD2=BD2
∴△BCD為直角三角形.
解法二:過點D作DF⊥y軸于點F.
在Rt△BOC中,∵OB=3,OC=3
∴OB=OC∴∠OCB=45°
∵在Rt△CDF中,DF=1,CF=OF-OC=4-3=1
∴DF=CF
∴∠DCF=45°
∴∠BCD=180°-∠DCF-∠OCB=90°
∴△BCD為直角三角形.
(3)①△BCD的三邊,
,又
,故當P是原點O時,△ACP∽△DBC;
②當AC是直角邊時,若AC與CD是對應邊,設P的坐標是(0,a),則PC=3﹣a,
,即
,解得:a=﹣9,則P的坐標是(0,﹣9),三角形ACP不是直角三角形,則△ACP∽△CBD不成立;
③當AC是直角邊,若AC與BC是對應邊時,設P的坐標是(0,b),則PC=3﹣b,則
,即
,解得:b=
,故P是(0,
)時,則△ACP∽△CBD一定成立;
④當P在x軸上時,AC是直角邊,P一定在B的左側,設P的坐標是(d,0).
則AP=1﹣d,當AC與CD是對應邊時,
,即
,解得:d=1﹣3
,此時,兩個三角形不相似;
⑤當P在x軸上時,AC是直角邊,P一定在B的左側,設P的坐標是(e,0).
則AP=1﹣e,當AC與DC是對應邊時,
,即
,解得:e=﹣9,符合條件.
總之,符合條件的點P的坐標為:p1(0,0)、p2(0,
)、p3(-9,0).
考點: 二次函數(shù)綜合題.
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
| 10 |
| 10 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com