【題目】如圖,某電信公司提供了A,B兩種方案的移動(dòng)通訊費(fèi)用y(元)與通話時(shí)間x(元)之間的關(guān)系,則下列結(jié)論中正確的有( )
(1)若通話時(shí)間少于120分,則A方案比B方案便宜20元;
(2)若通話時(shí)間超過200分,則B方案比A方案便宜12元;
(3)若通訊費(fèi)用為60元,則B方案比A方案的通話時(shí)間多;
(4)若兩種方案通訊費(fèi)用相差10元,則通話時(shí)間是145分或185分.
![]()
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D是△ABC內(nèi)一點(diǎn),點(diǎn)E,F,G,H分別是AB,AC,CD,BD的中點(diǎn)。
![]()
(1)求證:四邊形EFGH是平行四邊形;(2)已知AD=6,BD=4,CD=3,∠BDC=90°,求四邊形EFGH的周長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】梧桐山是深圳最高的山峰,某校綜合實(shí)踐活動(dòng)小組要測(cè)量“主山峰”的高度,先在梧桐山對(duì)面廣場(chǎng)的A處測(cè)得“峰頂”C的仰角為45°,此時(shí),他們剛好與峰底D在同一水平線上.然后沿著坡度為30°的斜坡正對(duì)著“主山峰”前行700米,到達(dá)B處,再測(cè)得“峰頂”C的仰角為60°,如圖,根據(jù)以上條件求出“主山峰”的高度?(測(cè)角儀的高度忽略不計(jì),結(jié)果精確到1米).參考數(shù)據(jù):(
1.4,
1.7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖平面直角坐標(biāo)系中,點(diǎn)
,
在
軸上,
,點(diǎn)
在
軸上方,
,
,線段
交
軸于點(diǎn)
,
,連接
,
平分
,過點(diǎn)
作
交
于
.
(1)點(diǎn)
的坐標(biāo)為 .
(2)將
沿線段
向右平移得
,當(dāng)點(diǎn)
與
重合時(shí)停止運(yùn)動(dòng),記
與
的重疊部分面積為
,點(diǎn)
為線段
上一動(dòng)點(diǎn),當(dāng)
時(shí),求
的最小值;
(3)當(dāng)
移動(dòng)到點(diǎn)
與
重合時(shí),將
繞點(diǎn)
旋轉(zhuǎn)一周,旋轉(zhuǎn)過程中,直線
分別與直線
、直線
交于點(diǎn)
、點(diǎn)
,作點(diǎn)
關(guān)于直線
的對(duì)稱點(diǎn)
,連接
、
、
.當(dāng)
為直角三角形時(shí),直接寫出線段
的長(zhǎng).
![]()
![]()
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市今年中考理化實(shí)驗(yàn)操作考試,采用學(xué)生抽簽方式?jīng)Q定自己的考試內(nèi)容.規(guī)定每位考生必須在三個(gè)物理實(shí)驗(yàn)(用紙簽A、B、C表示)和三個(gè)化學(xué)試驗(yàn)(用紙簽D、E、F表示)中各抽取一個(gè)實(shí)驗(yàn)操作進(jìn)行考試,小剛在看不到紙簽的情況下,分別從中各隨機(jī)抽取一個(gè).用列表或畫樹狀圖的方法求小剛抽到物理實(shí)驗(yàn)B和化學(xué)實(shí)驗(yàn)F的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),已知點(diǎn)G在正方形ABCD的對(duì)角線AC上,GE⊥BC,垂足為點(diǎn)E,GF⊥CD,垂足為點(diǎn)F.
(1)證明與推斷:
①求證:四邊形CEGF是正方形;
②推斷:
的值為 :
(2)探究與證明:
將正方形CEGF繞點(diǎn)C順時(shí)針方向旋轉(zhuǎn)α角(0°<α<45°),如圖(2)所示,試探究線段AG與BE之間的數(shù)量關(guān)系,并說明理由:
(3)拓展與運(yùn)用:
正方形CEGF在旋轉(zhuǎn)過程中,當(dāng)B,E,F(xiàn)三點(diǎn)在一條直線上時(shí),如圖(3)所示,延長(zhǎng)CG交AD于點(diǎn)H.若AG=6,GH=2
,則BC= .
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知矩形ABCD,把△BCD沿BD翻折,得△BDG,BG,AD所在的直線交于點(diǎn)E,過點(diǎn)D作DF∥BE交BC所在直線于點(diǎn)F.
![]()
(1)求證:四邊形DEBF是菱形;
(2)若AB=8,AD=4,求四邊形BEDF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O 是△ABC 的外接圓,BC 是直徑,AC=2DH,過點(diǎn) D 作 DH 垂直BC 于點(diǎn) H,以下結(jié)論中:①BH=HD;②∠BAO=∠BOD;③
;④連接 AO、BD,若 BC=8,sin∠HDO=
,則四邊形 ABDO 的面積為
, 其中正確的結(jié)論是 ____(請(qǐng)?zhí)顚懶蛱?hào))
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC與△CDE都是等邊三角形,點(diǎn)E、F分別在AC、BC上,且EF∥AB.
(1)求證:四邊形EFCD是菱形;
(2)設(shè)CD=2,求D、F兩點(diǎn)間的距離.
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com