【題目】(1)如圖1,在四邊形
中,
,
、
分別是
、
的中點(diǎn),連接
并延長(zhǎng),分別與
、
的延長(zhǎng)線交于點(diǎn)
、
,證明:
.
請(qǐng)將證明
的過(guò)程填寫完整:
證明:連接
,取
的中點(diǎn)
,連接
、
.
是
的中點(diǎn),
是
的中點(diǎn),
________,
_______,同理:
_______,
_______,
,
,
又
,
,
,
.
(2)運(yùn)用上題方法解決下列問(wèn)題:
問(wèn)題一:如圖2,在四邊形
中,
與
相交于點(diǎn)
,
,
、
分別是
、
的中點(diǎn),連接
,分別交
、
于點(diǎn)
、
,請(qǐng)判斷
的形狀,并說(shuō)明理由;
問(wèn)題二:如圖3,在鈍角
中,
,
點(diǎn)在
上,
、
分別是
、
的中點(diǎn),連接
并延長(zhǎng),與
的延長(zhǎng)線交于點(diǎn)
,連接
,若
,
是直角三角形且
,求證:
.
![]()
【答案】(1)
;
;
;
;(2)△OMN為等腰三角形,理由見詳解;(3)見詳解
【解析】
(1)根據(jù)題目已知條件補(bǔ)充完整即可;
解:(1)證明:連接
,取
的中點(diǎn)
,連接
、
.
是
的中點(diǎn),
是
的中點(diǎn),
,
,同理:
,
,
,
,
又
,
,
,
.
故答案為:
;
;
;
;
(2)△OMN為等腰三角形;
證明:取AC中點(diǎn)P,連接PF,PE,
![]()
可知PE=
,PE∥AB,
∴∠PEF=∠ANF,
同理PF=
,
PF∥CD,
∴∠PFE=∠CME,
又PE=PF,
∴∠PFE=∠PEF,
∴∠OMN=∠ONM,
∴△OMN為等腰三角形;
(3)如圖連接BD,取BD的中點(diǎn)H,連接HF、HE,
![]()
∵F是AD的中點(diǎn),
∴HF∥AB, HF=![]()
同理,HE∥CD,HE=![]()
∵GF為直角三角形斜邊上的中線
∴![]()
∵![]()
∴△AGF是等邊三角形
∴∠AGF=∠EFC=∠HFE=60°
∵![]()
∴![]()
∴![]()
∴
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半徑為2,圓心角為60°,則圖中陰影部分的面積是 . ![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(閱讀材料)平面直角坐標(biāo)系中,點(diǎn)P(x,y)的橫坐標(biāo)x的絕對(duì)值表示為|x|,縱坐標(biāo)y的絕對(duì)值表示為|y|,我們把點(diǎn)P(x,y)的橫坐標(biāo)與縱坐標(biāo)的絕對(duì)值之和叫做點(diǎn)P(x,y)的勾股值,記為[P],即[P]=|x|+|y|(其中的“+”是四則運(yùn)算中的加法),例如點(diǎn)P(1,2)的勾股值[P]=|1|+|2|=3.
(1)求點(diǎn)A(
,
)的勾股值[A],
(2)若將點(diǎn)A向上平移3個(gè)單位,再向左平移2個(gè)單位后得到點(diǎn)B,請(qǐng)直接寫出點(diǎn)B的坐標(biāo),并求出點(diǎn)B的勾股值 [B];
(3)若點(diǎn)M在x軸的上方,其橫,縱坐標(biāo)均為整數(shù),且[M]=3,請(qǐng)直接寫出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,E為邊長(zhǎng)為1的正方形ABCD中CD邊上的一動(dòng)點(diǎn)(不含點(diǎn)C、D),以BE為邊作圖中所示的正方形BEFG.![]()
(1)求∠ADF的度數(shù);
(2)如圖2,若BF交AD于點(diǎn)H,連接EH,求證:HB平分∠AHE;![]()
(3)如圖3,連接AE、CG,作BM⊥AE于點(diǎn)M,BM交GC于點(diǎn)N,連接DN.當(dāng)E在CD上運(yùn)動(dòng)時(shí),求證:NC=NG.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在
中,點(diǎn)
是
邊上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)
作直線
,設(shè)
交
的角平分線于點(diǎn)
,交
的外角平分線于點(diǎn)
.
(1)求證:
;
(2)當(dāng)點(diǎn)
運(yùn)動(dòng)到何處時(shí),四邊形
是矩形?并證明你的結(jié)論.
(3)當(dāng)點(diǎn)
運(yùn)動(dòng)到何處,且
滿足什么條件時(shí),四邊形
是正方形?并說(shuō)明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A,B是反比例函數(shù)y=
(k>0,x>0)圖象上的兩點(diǎn),BC∥x軸,交y軸于點(diǎn)C,動(dòng)點(diǎn)P從坐標(biāo)原點(diǎn)O出發(fā),沿O→A→B→C(圖中“→”所示路線)勻速運(yùn)動(dòng),終點(diǎn)為C,過(guò)P作PM⊥x軸,垂足為M.設(shè)三角形OMP的面積為S,P點(diǎn)運(yùn)動(dòng)時(shí)間為t,則S關(guān)于t的函數(shù)圖象大致為( )![]()
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】菱形ABCD中,∠B=60°,AB=4,點(diǎn)E在BC上,CE=2
,若點(diǎn)P是菱形上異于點(diǎn)E的另一點(diǎn),CE=CP,則EP的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有正方形ABCD和一個(gè)以O(shè)為直角頂點(diǎn)的三角板,移動(dòng)三角板,使三角板兩直角邊所在直線分別與直線BC,CD交于點(diǎn)M、N.
(1)如圖1,若點(diǎn)O與點(diǎn)A重合,則OM與ON的數(shù)量關(guān)系是;![]()
(2)如圖2,若點(diǎn)O在正方形的中心(即兩對(duì)角線交點(diǎn)),則(1)中的結(jié)論是否仍然成立?請(qǐng)說(shuō)明理由;![]()
(3)如圖3,若點(diǎn)O在正方形的內(nèi)部(含邊界),當(dāng)OM=ON時(shí),請(qǐng)?zhí)骄奎c(diǎn)O在移動(dòng)過(guò)程中可形成什么圖形?![]()
(4)如圖4,是點(diǎn)O在正方形外部的一種情況.當(dāng)OM=ON時(shí),請(qǐng)你就“點(diǎn)O的位置在各種情況下(含外部)移動(dòng)所形成的圖形”提出一個(gè)正確的結(jié)論.(不必說(shuō)明)![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知矩形AOBC的頂點(diǎn)C的坐標(biāo)是(2,4),動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿線段AO向終點(diǎn)O運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿線段BC向終點(diǎn)C運(yùn)動(dòng).點(diǎn)P、Q的運(yùn)動(dòng)速度均為每秒1個(gè)單位,設(shè)運(yùn)動(dòng)時(shí)間為t秒,過(guò)點(diǎn)P作PE⊥AO交AB于點(diǎn)E.
(1)求直線AB的解析式;
(2)在動(dòng)點(diǎn)P、Q運(yùn)動(dòng)的過(guò)程中,以B、Q、E為頂點(diǎn)的三角形是直角三角形,直按寫出t的值;
(3)設(shè)△PEQ的面積為S,求S與時(shí)間t的函數(shù)關(guān)系,并指出自變量t的取值范圍.
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com