【題目】如圖,已知△ABC和△ADE均為等邊三角形,點(diǎn)OAC的中點(diǎn),點(diǎn)D在A射線BO上,連接OE,EC,若AB=4,則OE的最小值為_____.
![]()
【答案】1
【解析】
根據(jù)等邊三角形的性質(zhì)可得OC=
AC,∠ABD=30°,根據(jù)“SAS”可證△ABD≌△ACE,可得∠ACE=30°=∠ABD,當(dāng)OE⊥EC時(shí),OE的長(zhǎng)度最小,根據(jù)直角三角形的性質(zhì)可求OE的最小值.
解:∵△ABC的等邊三角形,點(diǎn)O是AC的中點(diǎn),
∴OC=
AC,∠ABD=30°
∵△ABC和△ADE均為等邊三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=60°,
∴∠BAD=∠CAE,且AB=AC,AD=AE,
∴△ABD≌△ACE(SAS)
∴∠ACE=30°=∠ABD
當(dāng)OE⊥EC時(shí),OE的長(zhǎng)度最小,
∵∠OEC=90°,∠ACE=30°
∴OE最小值=
OC=
AB=1,
故答案為:1
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形OABC的頂點(diǎn)A的坐標(biāo)為(3,4),頂點(diǎn)C在x軸的正半軸上,反比例函數(shù)y=
(x>0)的圖象經(jīng)過頂點(diǎn)B,則反比例函數(shù)的表達(dá)式為( )
![]()
A. y=
B. y=
C. y=
D. y=![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,DE∥AC,AE∥BD.
(1)求證:四邊形AODE是矩形;
(2)若AB=2
,AC=2,求四邊形AODE的周長(zhǎng).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y1=2x﹣2與雙曲線y2=
交于A、C兩點(diǎn),AB⊥OA交x軸于點(diǎn)B,且OA=AB.
(1)求雙曲線的解析式;
(2)求點(diǎn)C的坐標(biāo),并直接寫出y1<y2時(shí)x的取值范圍.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解下列方程
(1)(x﹣8)(x﹣1)=﹣12;
(2)3(x﹣5)2=2(5﹣x).
(3)y2-7y+6=0;
(4)2x2-4x-3=0;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線
與
軸交于點(diǎn)
,對(duì)稱軸為
,則下列結(jié)論中正確的是( )
![]()
A. ![]()
B. 當(dāng)
時(shí),
隨
的增大而增大
C. ![]()
D.
是一元二次方程
的一個(gè)根
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017寧夏)在邊長(zhǎng)為2的等邊三角形ABC中,P是BC邊上任意一點(diǎn),過點(diǎn) P分別作 PM⊥A B,PN⊥AC,M、N分別為垂足.
(1)求證:不論點(diǎn)P在BC邊的何處時(shí)都有PM+PN的長(zhǎng)恰好等于三角形ABC一邊上的高;
(2)當(dāng)BP的長(zhǎng)為何值時(shí),四邊形AMPN的面積最大,并求出最大值.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com