如圖,Rt△ABC中,∠C=90°,D是AB上一點,以BD為直徑的⊙O切AC于點E,交BC于點F,OG⊥BC于G點.![]()
(1)求證:CE=OG;
(2)若BC=3cm,
,求線段AD的長.
(1)首先連接OE,由⊙O切AC于點E,OG⊥BC,Rt△ABC中,∠C=Rt∠,易證得四邊形OGCE是矩形,則可證得CE=OG;(2)![]()
解析試題分析:(1)首先連接OE,由⊙O切AC于點E,OG⊥BC,Rt△ABC中,∠C=Rt∠,易證得四邊形OGCE是矩形,則可證得CE=OG;
(2)由BC=3cm,
,可求得AB的長,易證得△AEO∽△ACB,然后根據相似三角形的對應邊成比例,可求得OB的長,繼而求得AD的長.
(1)連接OE![]()
∵⊙O切AC于點E,
∴OE⊥AC,即∠OEC=90°,
∵OG⊥BC,
∴∠CGO=90°,
∵Rt△ABC中,∠C=Rt∠,
∴四邊形OGCE是矩形,
∴CE=OG;
(2)在Rt△ABC中,![]()
![]()
∵BC=3cm,
∴AB=BC÷cosB=5(cm),
∵∠A=∠A,∠AEO=∠ACB=90°,
∴△AEO∽△ACB,
∴
,即
,解得![]()
∴![]()
∴![]()
考點:切線的性質、矩形的判定與性質、相似三角形的判定與性質,三角函數(shù)
點評:此題綜合性較強,難度適中,注意掌握方程思想與數(shù)形結合思想的應用.
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
| 3 | 4 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com