| A. | 2 | B. | 4 | C. | 6 | D. | 8 |
分析 設S△BDE=x,由$\frac{{S}_{△ADE}}{{S}_{△BDE}}$=$\frac{AD}{BD}$、$\frac{{S}_{△ABE}}{{S}_{△BCE}}$=$\frac{AE}{CE}$,結合$\frac{AD}{DB}$=$\frac{AE}{CE}$得出$\frac{{S}_{△ADE}}{{S}_{△BDE}}$=$\frac{{S}_{△ABE}}{{S}_{△BCE}}$,再將x的值代入即可得出答案.
解答 解:設S△BDE=x.
∵$\frac{{S}_{△ADE}}{{S}_{△BDE}}$=$\frac{AD}{BD}$,$\frac{{S}_{△ABE}}{{S}_{△BCE}}$=$\frac{AE}{CE}$,
∵DE∥BC,
∴$\frac{AD}{DB}$=$\frac{AE}{CE}$,
∵S△ADE=3,S△BCE=18,
∴$\frac{{S}_{△ADE}}{{S}_{△BDE}}$=$\frac{{S}_{△ABE}}{{S}_{△BCE}}$,
∴$\frac{3}{x}$=$\frac{3+x}{18}$,
解得:x1=-9(舍),x2=6.
∴S△BDE=6;
故選:C.
點評 本題考查了平行線分線段成比例定理,三角形的面積,熟練掌握平行線分線段成比例定理是解題的關鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | $\frac{1}{2}$ | B. | $\frac{3}{5}$ | C. | 2-$\sqrt{3}$ | D. | 4-2$\sqrt{3}$ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com