欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

已知點(diǎn)A(-
13
4
,y1),B(-
5
4
,y2),C(
1
4
,y3)在拋物線y=x2-mx+n(m、n為常數(shù))上,且y2<y1<y3,則m的取值范圍是______.
∵點(diǎn)A(-
13
4
,y1),B(-
5
4
,y2),C(
1
4
,y3)在拋物線y=x2-mx+n(m、n為常數(shù))上,y2<y1<y3
∴B(-
5
4
,y2),C(
1
4
,y3)在對(duì)稱軸右側(cè),點(diǎn)A(-
13
4
,y1),在對(duì)稱軸左側(cè),
且A點(diǎn)到對(duì)稱軸距離大于B點(diǎn)到對(duì)稱軸距離,
∴對(duì)稱軸0>x>(-
13
4
-
5
4
),
即0>x>-
9
2
,
∴0>
m
2
>-
9
2
,
解得:-9<m<0.
故答案為:-9<m<0.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=ax2+bx+c(a<0)與x軸交于A、B兩點(diǎn),點(diǎn)A在x軸的負(fù)半軸上,點(diǎn)B在x軸的正半軸上,又此拋物線交y軸于點(diǎn)C,連AC、BC,且滿足△OAC的面積與△OBC的面積之差等于兩線段OA與OB的積(即S△OAC-S△OBC=OA•OB)
(1)求b的值;
(2)若tan∠CAB=
1
2
,拋物線的頂點(diǎn)為點(diǎn)P,是否存在這樣的拋物線,使得△PAB的外接圓半徑為
13
4
?若存在,求出這樣的拋物線的解析式;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀材料:
在平面直角坐標(biāo)系中,已知x軸上兩點(diǎn)A(x1,0),B(x2,0)的距離記作|AB|=|x1-x2|,如果A(x1,y1),B(x2,y2)是平面上任意兩點(diǎn),我們可以通過構(gòu)造直角三角形來求AB間距離.
如圖,過A,B分別向x軸,y軸作垂線AM1、AN1和BM2、BN2,垂足分別是M1(x1,0),N1(0,y1),M2(x2,0),N2(0,y2),直線AN1交BM2于Q點(diǎn),在Rt△ABQ中,|AB|2=|AQ|2+|QB|2
∵|AQ|=|M1M2|=|x2-x1|,|QB|=|N1N2|=|y2-y1|,∴|AB|2=|x2-x1|2+|y2-y1|2
由此得任意兩點(diǎn)[A(x1,y1),B(x2,y2)]間距離公式為:|AB|=
(x2-x1)2+(y2-y1)2

(1)直接應(yīng)用平面內(nèi)兩點(diǎn)間距離公式計(jì)算,點(diǎn)A(1,-3),B(-2,1)之間的距離為
5
5

(2)平面直角坐標(biāo)系中的兩點(diǎn)A(1,3)、B(4,1),P為x軸上任一點(diǎn),當(dāng)PA+PB最小時(shí),直接寫出點(diǎn)P的坐標(biāo)為
13
4
,0)
13
4
,0)
,PA+PB的最小值為
5
5

(3)應(yīng)用平面內(nèi)兩點(diǎn)間距離公式,求代數(shù)式
x2+(y-2)2
+
(x-3)2+(y-1)2
的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(-
13
4
,y1),B(-
5
4
,y2),C(
1
4
,y3)在拋物線y=x2-mx+n(m、n為常數(shù))上,且y2<y1<y3,則m的取值范圍是
-
9
2
<m<-3
-
9
2
<m<-3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在四邊形ABCD中,∠A=134°-∠2,∠ABC=46°+∠2,BD⊥CD于點(diǎn)D,EF⊥CD于點(diǎn)F.求證:∠1=∠2.請(qǐng)你完成下面證明過程.
證明:∵∠A=134°-∠2,
∠ABC=46°+∠2,
已知
已知

∴∠A+∠ABC=134°-∠2+46°+∠2=180°.
(等式性質(zhì))
∴AD∥BC,
(同旁內(nèi)角互補(bǔ),兩直線平行)
(同旁內(nèi)角互補(bǔ),兩直線平行)

∴∠1=∠DBC,
(兩直線平行,內(nèi)錯(cuò)角相等)
(兩直線平行,內(nèi)錯(cuò)角相等)

∵BD⊥DC,EF⊥DC,
(已知)
(已知)

∴∠BDC=90°,∠EFC=90°,
(垂直定義)
(垂直定義)

∴∠BDC=∠EFC.
∴BD∥
EF
EF
(同位角相等,兩直線平行)
(同位角相等,兩直線平行)

∴∠2=∠DBC,
(兩直線平行,同位角相等)
(兩直線平行,同位角相等)

∴∠1=∠2.
(等量代換)
(等量代換)

查看答案和解析>>

同步練習(xí)冊(cè)答案