分析 要證明BF=AC,只要證明△BDF≌△ADC即可,根據(jù)題目中的條件可以找到兩個三角形全等的條件,從而可以解答本題.
解答 證明:∵AD、BE為△ABC的高,
∴∠ADB=∠ADC=∠BEC=90°,
∴∠DBF+∠C=90°,∠DAC+∠C=90°,
∴∠DBF=∠DAC,
∵∠ABC=45°,∠ADB=90°,
∴∠DAB=45°,
∴∠ABD=∠BAD,
∴AD=BD,
在△BDF和△ADC中,
$\left\{\begin{array}{l}{∠DBF=∠DAC}\\{BD=AD}\\{∠BDF=∠ADC}\end{array}\right.$,
∴△BDF≌△ADC(ASA),
∴BF=AC.
點評 本題考查全等三角形的判定與性質(zhì),解答本題的關鍵是明確題意,找出所要證明結論需要的條件,利用三角形全等的知識解答.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 44 | B. | 45 | C. | 46 | D. | 47 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | $\left\{\begin{array}{l}{x-y=1}\\{xy=2}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{\frac{1}{x}-1=y}\\{3x+y=0}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{{x}^{2}-x-2=0}\\{y=x+1}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{4x-y=-1}\\{y=2x+3}\end{array}\right.$ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | (x+3)2=x2+9 | B. | (-2a+b)2=4a2+4ab+b2 | ||
| C. | (a-2b)2=a2-2ab+4b2 | D. | ($\frac{1}{2}$-x)2=x2-x+$\frac{1}{4}$ |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com