分析 利用旋轉(zhuǎn)的性質(zhì)得CF=CB=2,∠BCF=90°,則可得△CBF為等腰直角三角形,于是可對(duì)①②進(jìn)行判斷;由于直線DF垂直平分AB,則FA=FB,BE=AE,于是根據(jù)等腰三角形的性質(zhì)和三角形外角性質(zhì)可計(jì)算出∠ECA=∠A=22.5°,然后根據(jù)三角形內(nèi)角和可計(jì)算出∠CEF,從而可對(duì)③進(jìn)行判斷;作EH⊥BD于H,如圖,根據(jù)三角形中位線性質(zhì)得EH=$\frac{1}{2}$AC=$\sqrt{2}$+1,利用旋轉(zhuǎn)性質(zhì)得CD=CA=2+2$\sqrt{2}$,則利用三角形面積公式可計(jì)算出△ECD的面積,從而可對(duì)④進(jìn)行判斷.
解答
解:∵把Rt△ABC繞頂點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到Rt△DFC,
∴CF=CB=2,∠BCF=90°,
∴△CBF為等腰直角三角形,
∴BF=$\sqrt{2}$BC=2$\sqrt{2}$,∠CBF=45°,所以①②正確;
∵直線DF垂直平分AB,
∴FA=FB,BE=AE,
∴∠A=∠ABF,
而∠BFC=∠A+∠ABF=45°,
∴∠A=22.5°,
∵CE為斜邊AB上的中線,
∴EC=EA,
∴∠ECA=∠A=22.5°,
∴∠CEF=180°-90°-2×22.5°=45°,所以③錯(cuò)誤;
作EH⊥BD于H,如圖,
∵把Rt△ABC繞頂點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到Rt△DFC,
∴CD=CA=2+2$\sqrt{2}$,
∵點(diǎn)E為AB的中點(diǎn),
∴EH=$\frac{1}{2}$AC=$\sqrt{2}$+1,
∴△ECD的面積=$\frac{1}{2}$•($\sqrt{2}$+1)•(2+2$\sqrt{2}$)=2$\sqrt{2}$+3,所以④正確.
故答案為①②④.
點(diǎn)評(píng) 本題考查了旋轉(zhuǎn)的性質(zhì):對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.求出點(diǎn)E到CD的距離是判斷④的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | B. | ||||
| C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | v=-5 | B. | v=0 | C. | v=5 | D. | v=6 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 36 | B. | 54 | C. | 63 | D. | 72 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 6a-2b+6 | B. | 2a-2b+6 | C. | 6a-2b | D. | 3a-b+3 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com