如圖1,在平面直角坐標系中,拋物線y=ax2+bx+3交x軸于A(﹣1,0)和B(5,0)兩點,交y軸于點C,點D是線段OB上一動點,連接CD,將線段CD繞點D順時針旋轉90°得到線段DE,過點E作直線l⊥x軸于H,過點C作CF⊥l于F.
(1)求拋物線解析式;
(2)如圖2,當點F恰好在拋物線上時,求線段OD的長;
(3)在(2)的條件下:
①連接DF,求tan∠FDE的值;
②試探究在直線l上,是否存在點G,使∠EDG=45°?若存在,請直接寫出點G的坐標;若不存在,請說明理由.
![]()
解:(1)如圖1,∵拋物線y=ax2+bx+3交x軸于A(﹣1,0)和B(5,0)兩點,
∴
,
解得
.
∴拋物線解析式為y=﹣
x2+
x+3;
(2)如圖2,∵點F恰好在拋物線上,C(0,3),
∴F的縱坐標為3,
把y=3代入y=﹣
x2+
x+3得,3=﹣
x2+
x+3;
解得x=0或x=4,
∴F(4,3),
∴OH=4,
∵∠CDE=90°,
∴∠ODC+∠EDH=90°,
∴∠OCD=∠EDH,
在△OCD和△HDE中,
,
∴△OCD≌△HDE(AAS),
∴DH=OC=3,
∴OD=4﹣3=1;
(3)①如圖3,連接CE,
∵△OCD≌△HDE,
∴HE=OD=1,
∵BF=OC=3,
∴EF=3﹣1=2,
∵∠CDE=∠CFE=90°,
∴C、D、E、F四點共圓,
∴∠ECF=∠EDF,
在RT△CEF中,∵CF=OH=4,
∴tan∠ECF=
=
=
,
∴tan∠FDE=
;
②如圖4,連接CE,
∵CD=DE,∠CDE=90°,
∴∠CED=45°,
過D點作DG1∥CE,交直線l于G1,過D點作DG2⊥CE,交直線l于G2,則∠EDG1=45°,∠EDG2=45°
∵EH=1,OH=4,
∴E(4,1),
∵C(0,3),
∴直線CE的解析式為y=﹣
x+3,
設直線DG1的解析式為y=﹣
x+m,
∵D(1,0),
∴0=﹣
×1+m,解得m=
,
∴直線DG1的解析式為y=﹣
x+
,
當x=4時,y=﹣
+
=﹣
,
∴G1(4,﹣
);
設直線DG2的解析式為y=2x+n,
∵D(1,0),
∴0=2×1+n,解得n=﹣2,
∴直線DG2的解析式為y=2x﹣2,
當x=4時,y=2×4﹣2=6,
∴G2(4,6);
綜上,在直線l上,是否存在點G,使∠EDG=45°,點G的坐標為(4,﹣
)或(4,6).
![]()
![]()
![]()
![]()
科目:初中數學 來源: 題型:
.下列一元二次方程中,有兩個相等實數根的是( 。
A. x2﹣8=0 B. 2x2﹣4x+3=0 C. 9x2+6x+1=0 D. 5x+2=3x2
查看答案和解析>>
科目:初中數學 來源: 題型:
如圖,大樓AN上懸掛一條幅AB,小穎在坡面D處測得條幅頂部A的仰角為30°,沿坡面向下走到坡腳E處,然后向大樓方向繼續(xù)行走10米來到C處,測得條幅的底部B的仰角為45°,此時小穎距大樓底端N處20米.已知坡面DE=20米,山坡的坡度i=1:
(即tan∠DEM=1:
),且D、M、E、C、N、B、A在同一平面內,E、C、N在同一條直線上,求條幅的長度(結果精確到1米)(參考數據:
≈1.73,
≈1.41)
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
為支援災區(qū),某校愛心活動小組準備用籌集的資金購買A、B兩種型號的學習用品共1000件.已知B型學習用品的單價比A型學習用品的單價多10元,用180元購買B型學習用品的件數與用120元購買A型學習用品的件數相同.
(1)求A、B兩種學習用品的單價各是多少元?
(2)若購買這批學習用品的費用不超過28000元,則最多購買B型學習用品多少件?
查看答案和解析>>
科目:初中數學 來源: 題型:
張老師隨機抽取6名學生,測試他們的打字能力,測得他們每分鐘打字個數分別為:100,80,70,80,90,95,那么這組數據的中位數是( 。
A. 80 B. 90 C. 85 D. 75
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com