欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

如圖,銳角的個(gè)數(shù)為( 。
分析:先計(jì)算∠AOD=95°,∠BOE=89°,則可判斷∠AOD為鈍角,∠BOE為銳角,然后從OA開(kāi)始依次寫出圖中的銳角.
解答:解:∵∠AOD=37°+27°+31°=95°,∠BOE=27°+31°+21°=89°,
∴∠AOD為鈍角,∠BOE為銳角,
∴圖中銳角有:∠AOB,∠AOC,∠BOC,∠BOD,∠BOE,∠COD,∠COE,∠DOE.
故選C.
點(diǎn)評(píng):本題考查了角的定義:有公共端點(diǎn)是兩條射線組成的圖形叫做角,其中這個(gè)公共端點(diǎn)是角的頂點(diǎn),這兩條射線是角的兩條邊.角的表示方法:角可以用一個(gè)大寫字母表示,也可以用三個(gè)大寫字母表示.其中頂點(diǎn)字母要寫在中間,唯有在頂點(diǎn)處只有一個(gè)角的情況,才可用頂點(diǎn)處的一個(gè)字母來(lái)記這個(gè)角,否則分不清這個(gè)字母究竟表示哪個(gè)角.角還可以用一個(gè)希臘字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯?dāng)?shù)字(∠1,∠2…)表示.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在一張△ABC紙片中,∠C=90°,∠B=60°,DE是中位線,現(xiàn)把紙片沿中位線DE剪開(kāi),計(jì)劃拼出以下四個(gè)圖形:①鄰邊不等的矩形;②等腰梯形;③有兩個(gè)角為銳角的菱形;④正方形.那么以上圖形一定能被拼成的個(gè)數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

問(wèn)題提出
我們?cè)诜治鼋鉀Q某些數(shù)學(xué)問(wèn)題時(shí),經(jīng)常要比較兩個(gè)數(shù)或代數(shù)式的大小,而解決問(wèn)題的策略一般要進(jìn)行一定的轉(zhuǎn)化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過(guò)作差、變形,并利用差的符號(hào)確定他們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.
問(wèn)題解決
如圖1,把邊長(zhǎng)為a+b(a≠b)的大正方形分割成兩個(gè)邊長(zhǎng)分別是a、b的小正方形及兩個(gè)矩形,試比較兩個(gè)小正方形面積之和M與兩個(gè)矩形面積之和N的大。

解:由圖可知:M=a2+b2,N=2ab.
∴M-N=a2+b2-2ab=(a-b)2
∵a≠b,∴(a-b)2>0.
∴M-N>0.
∴M>N.
類比應(yīng)用
【小題1】已知:多項(xiàng)式M =2a2-a+1 ,N =a2-2a.試比較M與N的大小.
【小題2】已知:如圖,銳角△ABC (其中BC為a,AC為b,AB為c)三邊
滿足a <b < c ,現(xiàn)將△ABC 補(bǔ)成長(zhǎng)方形,使得△ABC的兩個(gè)頂
點(diǎn)為長(zhǎng)方形的兩個(gè)端點(diǎn),第三個(gè)頂點(diǎn)落在長(zhǎng)方形的這一邊的對(duì)邊上。                     
①這樣的長(zhǎng)方形可以畫(huà)       個(gè);
②所畫(huà)的長(zhǎng)方形中哪個(gè)周長(zhǎng)最?為什么?

拓展延伸                                                                                               
已知:如圖,銳角△ABC (其中BC為a,AC為b,AB為c)三邊滿足a <b < c ,畫(huà)其BC邊上的內(nèi)接正方形EFGH , 使E、F兩點(diǎn)在邊BC上,G、H分別在邊AC、AB上,同樣還可畫(huà)AC、AB邊上的內(nèi)接正方形,問(wèn)哪條邊上的內(nèi)接正方形面積最大?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013屆江蘇省江陰市長(zhǎng)涇片九年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(帶解析) 題型:解答題


【問(wèn)題提出】我們?cè)诜治鼋鉀Q某些數(shù)學(xué)問(wèn)題時(shí),經(jīng)常要比較兩個(gè)數(shù)或代數(shù)式的大小,而解決問(wèn)題的策略一般要進(jìn)行一定的轉(zhuǎn)化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過(guò)作差、變形,并利用差的符號(hào)確定他們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.
【問(wèn)題解決】如圖1,把邊長(zhǎng)為a+b(a≠b)的大正方形分割成兩個(gè)邊長(zhǎng)分別是a、b的小正方形及兩個(gè)矩形,試比較兩個(gè)小正方形面積之和M與兩個(gè)矩形面積之和N的大。

解:由圖可知:,

∵a≠b,∴>0.
∴M-N>0.∴M>N.
【類比應(yīng)用】(1)已知:多項(xiàng)式M =2a2-a+1 ,N =a2-2a .
試比較M與N的大。
(2)已知:如圖2,銳角△ABC (其中BC為a ,AC為 b,
AB為c)三邊滿足a <b < c ,現(xiàn)將△ABC 補(bǔ)成長(zhǎng)方形,
使得△ABC的兩個(gè)頂點(diǎn)為長(zhǎng)方形的兩個(gè)端點(diǎn),第三個(gè)頂點(diǎn)落
在長(zhǎng)方形的這一邊的對(duì)邊上。
 
①這樣的長(zhǎng)方形可以畫(huà)     個(gè);
②所畫(huà)的長(zhǎng)方形中哪個(gè)周長(zhǎng)最?為什么?
【拓展延伸】 已知:如圖,銳角△ABC (其中BC為a,AC為b,AB為c)三邊滿足a <b < c ,畫(huà)其BC邊上的內(nèi)接正方形EFGH , 使E、F兩點(diǎn)在邊BC上,G、H分別在邊AC、AB上,同樣還可畫(huà)AC、AB邊上的內(nèi)接正方形,問(wèn)哪條邊上的內(nèi)接正方形面積最大?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇鹽城鹽都區(qū)九年級(jí)下學(xué)期期中質(zhì)量檢測(cè)數(shù)學(xué)試卷(解析版). 題型:解答題

問(wèn)題提出

我們?cè)诜治鼋鉀Q某些數(shù)學(xué)問(wèn)題時(shí),經(jīng)常要比較兩個(gè)數(shù)或代數(shù)式的大小,而解決問(wèn)題的策略一般要進(jìn)行一定的轉(zhuǎn)化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過(guò)作差、變形,并利用差的符號(hào)確定他們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.

問(wèn)題解決

如圖1,把邊長(zhǎng)為a+b(a≠b)的大正方形分割成兩個(gè)邊長(zhǎng)分別是a、b的小正方形及兩個(gè)矩形,試比較兩個(gè)小正方形面積之和M與兩個(gè)矩形面積之和N的大。

解:由圖可知:M=a2+b2,N=2ab.

∴M-N=a2+b2-2ab=(a-b)2

∵a≠b,∴(a-b)2>0.

∴M-N>0.

∴M>N.

類比應(yīng)用

1.已知:多項(xiàng)式M =2a2-a+1 ,N =a2-2a .試比較M與N的大。

2.已知:如圖,銳角△ABC (其中BC為a,AC為b,AB為c)三邊

滿足a <b < c ,現(xiàn)將△ABC 補(bǔ)成長(zhǎng)方形,使得△ABC的兩個(gè)頂

點(diǎn)為長(zhǎng)方形的兩個(gè)端點(diǎn),第三個(gè)頂點(diǎn)落在長(zhǎng)方形的這一邊的對(duì)邊上。                     

      ①這樣的長(zhǎng)方形可以畫(huà)        個(gè);

②所畫(huà)的長(zhǎng)方形中哪個(gè)周長(zhǎng)最?為什么?

拓展延伸                                                                                                                               

     已知:如圖,銳角△ABC (其中BC為a,AC為b,AB為c)三邊滿足a <b < c ,畫(huà)其BC邊上的內(nèi)接正方形EFGH , 使E、F兩點(diǎn)在邊BC上,G、H分別在邊AC、AB上,同樣還可畫(huà)AC、AB邊上的內(nèi)接正方形,問(wèn)哪條邊上的內(nèi)接正方形面積最大?為什么?

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案