(1)如圖1,在正方形ABCD中,M是BC邊(不含端點B、C)上任意一點,P是BC延長線上一點,N是∠DCP的平分線上一點.若∠AMN=90°.
求證:AM=MN.
![]()
下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.
證明:在邊AB上截取AE=MC,連ME.
∵正方形ABCD中,∠B=90°,∠AMN=90°
∴∠1=180°-∠AMN-∠AMB =180°-∠B-∠AMB=∠2
(下面請你完成余下的證明過程)
(2)若將(1)中的“正方形ABCD”改為“正三角形ABC”(如圖2),N是∠ACP的平分線上一點,則當∠AMN=60°時,結論AM=MN是否還成立?請說明理由.
![]()
(1)∵AE=MC,
∴BE=BM,
∴∠BEM=∠EMB=45°,
∴∠AEM=135°,
∵CN平分∠DCP,
∴∠PCN=45°,
∴∠AEM=∠MCN=135°
在△AEM和△MCN中:
∵ {∠AEM=∠MCNAE=MC∠EAM=∠CMN
∴△AEM≌△MCN,
∴AM=MN;
(2)仍然成立.
在邊AB上截取AE=MC,連接ME,
![]()
∵△ABC是等邊三角形,
∴AB=BC,∠B=∠ACB=60°,
∴∠ACP=120°,
∵AE=MC,
∴BE=BM,
∴∠BEM=∠EMB=60°,
∴∠AEM=120°,
∵CN平分∠ACP,
∴∠PCN=60°,
∴∠AEM=∠MCN=120°,
∵∠CMN=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠BAM,
∴△AEM≌△MCN,
∴AM=MN.
【解析】(1)由題中條件可得∠AEM=∠MCN=135°,再由兩角夾一邊即可判定三角形全等;
(2)還是利用兩角夾一邊證明其全等,證明方法同(1).
科目:初中數(shù)學 來源: 題型:
| 1 |
| x |
| 1 |
| x |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
| 1 | x |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
| k |
| x |
| 1 |
| 8 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
| 50 |
| 50 |
| 50 |
| 2 |
| 2 |
| 3 |
| 3 |
| 3 |
| 3 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com