如圖,五邊形ABCDE中,AB⊥BC,AE∥CD,∠A=∠E=120°,AB=CD=1,AE=2,則五邊形ABCDE的面積等于 _________ .
![]()
.
【解析】
試題分析:延長DC,AB交于點(diǎn)F,作AG∥DE交DF于點(diǎn)G,四邊形AFDE是等腰梯形,且∠F=∠D=60°,△AFG是等邊三角形,四邊形AGDE是平行四邊形,求得等腰梯形AFDE的面積和△BCF的面積,二者的差就是所求五邊形的面積.
試題解析:延長DC,AB交于點(diǎn)F,作AG∥DE交DF于點(diǎn)G.
![]()
∵AE∥CD,∠A=∠E=120°,
∴四邊形AFDE是等腰梯形,且∠F=∠D=60°,△AFG是等邊三角形,四邊形AGDE是平行四邊形.設(shè)BF=x,
∵在直角△BCF中,∠BCF=90°-∠F=30°
∴FC=2x,
∴FD=2x+1.
∵平行四邊形AGDE中,DG=AE=2,
∴FG=2x-1,
∵△AFG是等邊三角形中,AF=FG,
∴x+1=2x-1,
解得:x=2.
在直角△BCF中,BC=BF•tanF=2
,
則S△BCF=
BF•BC=
×2×2
=2
.
作AH⊥DF于點(diǎn)H.則AH=AF•sinF=3×
=
,
則S梯形AFDE=
(AE+DF)•AH=
×(2+5)•
=
.
∴S五邊形ABCDE=S梯形AFDE-S△BCF=
-
.
考點(diǎn): 1.等腰梯形的性質(zhì);2.含30度角的直角三角形;3.勾股定理.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
| 3 |
| 2 |
| 3 |
| 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com