如圖,梯形ABCD中,AD//BC,AB=CD,對(duì)角線AC、BD交于點(diǎn)O,AC
BD,E、F、G、H分別為AB、BC、CD、DA的中點(diǎn)
(1)求證:四邊形EFGH為正方形;
(2)若AD=2,BC=4,求四邊形EFGH的面積。
![]()
(1)證明:在△ABC中,E、F分別是AB、BC的中點(diǎn),EF=
AC。
同理FG=
BD,GH=
AC,HE=
BD。
∵在梯形ABCD中,AB=DC,∴AC=BD。
∴EF=FG=GH=HE,∴四邊形EFGH是菱形。
設(shè)AC與EH交于點(diǎn)M,
在△ABD中,E、H分別是AB、AD的中點(diǎn),則EH∥BD,同理GH∥AC。
又∵AC⊥BD,∴∠BOC=90°。∴∠EHG=∠EMC=90°。
∴四邊形EFGH是正方形。
(2)解:連接EG。
![]()
在梯形ABCD中,∵E、F分別是AB、DC的中點(diǎn),
∴
。
在Rt△EHG中,∵EH2+GH2=EG2,EH=GH,
∴
,即四邊形EFGH的面積為
。
【解析】三角形中位線定理,等腰梯形的性質(zhì),正方形的判定,梯形中位線定理,勾股定理。
(1)先由三角形的中位線定理求出四邊相等,然后由AC⊥BD入手,進(jìn)行正方形的判斷。
(2)連接EG,利用梯形的中位線定理求出EG的長(zhǎng),然后結(jié)合(1)的結(jié)論求出
,也即得出了正方形EHGF的面積。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
A、
| ||||
B、4
| ||||
C、
| ||||
D、4
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
| ||
| 10 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com