【題目】如圖,在△ABC中,AD是BC上的高,且BC=9,AD=3,矩形EFGH的頂點(diǎn)F、G在邊BC上,頂點(diǎn)E、H分別在邊AB和AC上,如果設(shè)邊EF的長(zhǎng)為x(0<x<3),矩形EFGH的面積為y,那么y關(guān)于x的函數(shù)解析式是_____.
![]()
【答案】y=﹣3x2+9x(0<x<3).
【解析】
根據(jù)矩形性質(zhì)得:EH∥BC,從而得△AEH∽△ABC,利用相似三角形對(duì)應(yīng)邊的比和對(duì)應(yīng)高的比相等表示EH的長(zhǎng),利用矩形面積公式得y與x的函數(shù)解析式.
解:∵四邊形EFGH是矩形,
∴EH∥BC,
∴△AEH∽△ABC,
∴
∵EF=DM=x,AD=3,
∴AM=3﹣x,
∴
∴EH=3(3﹣x)=9﹣3x,
∴y=EHEF=x(9﹣3x)=﹣3x2+9x(0<x<3).
故答案為:y=﹣3x2+9x(0<x<3).
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠C=90°,AC=6,BC=
,點(diǎn)E從A出發(fā)沿線(xiàn)段AC運(yùn)動(dòng)至點(diǎn)C停止,ED⊥AB,EF⊥AC,將△ADE沿直線(xiàn)EF翻折得到△A′D′E,設(shè)DE=x,△A′D′E與△ABC重合部分的面積為y.
(1)當(dāng)x= 時(shí),D′恰好落在BC上?
(2)求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出x的取值范圍.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,AB=2,∠DAB=60°,點(diǎn)E是AD邊的中點(diǎn),點(diǎn)M是AB邊上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A重合),延長(zhǎng)ME交CD的延長(zhǎng)線(xiàn)于點(diǎn)N,連接MD,AN.
![]()
(1)求證:四邊形AMDN是平行四邊形.
(2)當(dāng)AM的值為何值時(shí),四邊形AMDN是矩形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,反比例函數(shù)y=
的圖象與一次函數(shù)y=x+b的圖象交
于點(diǎn)A(1,4)、點(diǎn)B(-4,n).
![]()
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△OAB的面積;
(3)直接寫(xiě)出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知矩形ABCD的一條邊AD=8,將矩形ABCD折疊,使得頂點(diǎn)B落在CD邊上的P點(diǎn)處.如圖,已知折痕與邊BC交于點(diǎn)O,連結(jié)AP、OP、OA.
(1)求證:△OCP∽△PDA;
(2)若tan∠PAO=
,求邊AB的長(zhǎng).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=﹣
x2+bx+c經(jīng)過(guò)點(diǎn)B(2
,0)、C(0,2)兩點(diǎn),與x軸的另一個(gè)交點(diǎn)為A.
![]()
(1)求拋物線(xiàn)的解析式;
(2)點(diǎn)D從點(diǎn)C出發(fā)沿線(xiàn)段CB以每秒
個(gè)單位長(zhǎng)度的速度向點(diǎn)B運(yùn)動(dòng),作DE⊥CB交y軸于點(diǎn)E,以CD、DE為邊作矩形CDEF,設(shè)點(diǎn)D運(yùn)動(dòng)時(shí)間為t(s).
①當(dāng)點(diǎn)F落在拋物線(xiàn)上時(shí),求t的值;
②若點(diǎn)D在運(yùn)動(dòng)過(guò)程中,設(shè)△ABC與矩形CDEF重疊部分的面積為S,請(qǐng)直接寫(xiě)出S與t之間的函數(shù)關(guān)系式,并寫(xiě)出自變量t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為改善生態(tài)環(huán)境,防止水土流失,某村計(jì)劃在江漢堤坡種植白楊樹(shù),現(xiàn)甲、乙兩家林場(chǎng)有相同的白楊樹(shù)苗可供選擇,其具體銷(xiāo)售方案如下:
甲林場(chǎng) | 乙林場(chǎng) | ||
購(gòu)樹(shù)苗數(shù)量 | 銷(xiāo)售單價(jià) | 購(gòu)樹(shù)苗數(shù)量 | 銷(xiāo)售單價(jià) |
不超過(guò)1000棵時(shí) | 4元/棵 | 不超過(guò)2000棵時(shí) | 4元/棵 |
超過(guò)1000棵的部分 | 3.8元/棵 | 超過(guò)2000棵的部分 | 3.6元/棵 |
設(shè)購(gòu)買(mǎi)白楊樹(shù)苗x棵,到兩家林場(chǎng)購(gòu)買(mǎi)所需費(fèi)用分別為y甲(元)、y乙(元).
(1)該村需要購(gòu)買(mǎi)1500棵白楊樹(shù)苗,若都在甲林場(chǎng)購(gòu)買(mǎi)所需費(fèi)用為 元,若都在乙林場(chǎng)購(gòu)買(mǎi)所需費(fèi)用為 元;
(2)分別求出y甲、y乙與x之間的函數(shù)關(guān)系式;
(3)如果你是該村的負(fù)責(zé)人,應(yīng)該選擇到哪家林場(chǎng)購(gòu)買(mǎi)樹(shù)苗合算,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,AC,BD相交于點(diǎn)O,BC=2OC,E為AB邊上一點(diǎn).
(1)若CE=6,∠ACE=15°,求BC的長(zhǎng);
(2)若F為BO上一點(diǎn),且BF=EF,G為CE中點(diǎn),連接FG,AG,求證:![]()
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AB=5,過(guò)點(diǎn)B作BD⊥AB,點(diǎn)C,D都在AB上方,AD交△BCD的外接圓⊙O于點(diǎn)E.
(1)求證:∠CAB=∠AEC.
(2)若BC=3.
①EC∥BD,求AE的長(zhǎng).
②若△BDC為直角三角形,求所有滿(mǎn)足條件的BD的長(zhǎng).
(3)若BC=EC=![]()
,則
= .(直接寫(xiě)出結(jié)果即可)
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com