分析 由正方形的性質(zhì)得出∠OCB=90°,BC=OC=OA=AB=1,OC∥AB,由勾股定理得出OB=$\sqrt{O{C}^{2}+B{C}^{2}}$=$\sqrt{2}$,OD=OC=1,證出△BDE∽△ODC,得出對(duì)應(yīng)邊成比例求出BE,得出AE,即可得出結(jié)果.
解答 解:∵四邊形ABCD是正方形,
∴∠OCB=90°,BC=OC=OA=AB=1,OC∥AB,
∴OB=$\sqrt{O{C}^{2}+B{C}^{2}}$=$\sqrt{{1}^{2}+{1}^{2}}$=$\sqrt{2}$,OD=OC=1,△BDE∽△ODC,
∴BD=$\sqrt{2}$-1,$\frac{BE}{OC}=\frac{BD}{OD}$,
即$\frac{BE}{1}=\frac{\sqrt{2}-1}{1}$,
解得:BE=$\sqrt{2}$-1,
∴AE=1-($\sqrt{2}$-1)=2-$\sqrt{2}$,
∴點(diǎn)E的坐標(biāo)為(1,2$-\sqrt{2}$).
點(diǎn)評(píng) 本題考查了正方形的性質(zhì)、勾股定理、相似三角形的判定與性質(zhì)、坐標(biāo)與圖形性質(zhì);熟練掌握正方形的性質(zhì),由相似三角形的性質(zhì)求出BE是解決問(wèn)題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | -3×2=-5 | B. | $\root{3}{-\frac{27}{8}}$=-$\frac{3}{2}$ | C. | -5-2×(-3)=-1 | D. | (-2)3=-6 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 3 | B. | 9 | C. | 7 | D. | 1 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com