【題目】如圖,在邊長為4的正方形ABCD中,P是BC邊上一動點(不含B、C兩點),將
ABP沿直線AP翻折,點B落在點E處;在CD上有一點M,使得將
CMP沿直線MP翻折后,點C落在直線PE上的點F處,直線PE交CD于點N,連接MA,NA.則以下結(jié)論中正確的個數(shù)有( ).![]()
①
CMP∽
BPA;
②四邊形AMCB的面積最大值為10;
③當(dāng)P為BC中點時,AE為線段NP的中垂線;
④線段AM的最小值為2
;
⑤當(dāng)
ABP≌
AND時,BP=4
-4.
A.①②③
B.②③⑤
C.①④⑤
D.①②⑤
【答案】D
【解析】解:
∵∠APB=∠APE,∠MPC=∠MPN,
∵∠CPN+∠NPB=180°,
∴2∠NPM+2∠APE=180°,
∴∠MPN+∠APE=90°,
∴∠APM=90°,
∵∠CPM+∠APB=90°,∠APB+∠PAB=90°,
∴∠CPM=∠PAB,
∵四邊形ABCD是正方形,
∴AB=CB=DC=AD=4,∠C=∠B=90°,
∴△CMP∽△BPA.故①正確,
設(shè)PB=x,則CP=4-x,
∵△CMP∽△BPA,
∴
=
,
∴CM=
x(4-x),
∴S四邊形AMCB=
[4+
x(4-x)]×4=-
x2+2x+8=-
(x-2)2+10,
∴x=2時,四邊形AMCB面積最大值為10,故②正確,
易證得△ADN≌△AEN,當(dāng)PB=PC=PE=2時,設(shè)ND=NE=y,
在RT△PCN中,(y+2)2=(4-y)2+22解得y=
,
∴NE≠EP,故③錯誤,
作MG⊥AB于G,
∵AM=
=
,
∴AG最小時AM最小,
∵AG=AB-BG=AB-CM=4-
x(4-x)=
(x-2)2+3,
∴x=2時,AG最小值=3,
∴AM的最小值=
=5,故④錯誤.
∵△ABP≌△ADN時,
∴∠PAB=∠DAN=22.5°,在AB上取一點K使得AK=PK,設(shè)PB=z,
∴∠KPA=∠KAP=22.5°
∵∠PKB=∠KPA+∠KAP=45°,
∴∠BPK=∠BKP=45°,
∴PB=BK=z,AK=PK=
z,
∴z+
z=4,
∴z=4
-4,
∴PB=4
-4,故⑤正確.
故正確的為①②⑤.
故選D.
【考點精析】關(guān)于本題考查的相似三角形的判定與性質(zhì),需要了解相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方才能得出正確答案.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是規(guī)格為8×8的正方形網(wǎng)格,請在所給的網(wǎng)格中按下列要求操作:
(1)請在網(wǎng)格中建立平面直角坐標(biāo)系,使點A坐標(biāo)為(﹣2,4),點B坐標(biāo)為(﹣4,2);
(2)在第二象限內(nèi)的格點上畫一點C,使點C與線段AB組成一個以AB為底的等腰三角形,且腰長是無理數(shù),則寫出點C的坐標(biāo),寫出△ABC的周長(結(jié)果保留根號);
(3)畫出△ABC關(guān)于y軸的對稱圖形△A1B1C1;并寫出點A1、B1、C1的坐標(biāo).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知線段AB=20cm,點C為AB上的一個動點,點D,E分別是AC和BC的中點
![]()
(1)若點C恰好是AB中點,則DE的長是多少?(直接寫出結(jié)果)
(2)若BC=14cm,求DE的長
(3)試說明不論BC取何值(不超過20cm),DE的長不變
(4)知識遷移:如圖②,已知∠AOB=130°,過角的內(nèi)部任一點C畫射線OC,若OD,OE分別平分∠AOC和∠BOC,試求出∠DOE的大小,并說明∠DOE的大小與射線OC的位置是否有關(guān)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形ABCD中,AD=8cm,AB=6cm,動點E從點C開始沿邊CB向點B以2cm/s的速度運動,動點F從點C同時出發(fā)沿邊CD向點D以1cm/s的速度運動,E點運動到B點停止,F(xiàn)點繼續(xù)運動,運動到點D停止.如圖可得到矩形CFHE,設(shè)F點運動時間為x(單位:s),此時矩形ABCD去掉矩形CFHE后剩余部分的面積為y(單位:cm2),則y與x之間的函數(shù)關(guān)系用圖象表示大致是如圖中的( )![]()
A.![]()
B.
C.![]()
D.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,△ABC是等邊三角形,D、E分別是BC、AC上一點,且AE=CD,AD,AD、BE交于P,過B作BQ⊥AD于Q,若QP=3cm,PE=1cm,求AD的長。
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點
是等邊
內(nèi)一點,
.將
繞點
按順時針方向旋轉(zhuǎn)
得
,連接
.
(1)求證:
是等邊三角形;
(2)當(dāng)
時,試判斷
的形狀,并說明理由;
(3)探究:當(dāng)
為多少度時,
是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的5×5的方格紙中,每個小正方形的邊長為1,點A、B、C均為格點(格點是指每個小正方形的頂點).
(1)按下列要求畫圖:
①標(biāo)出格點D,使CD∥AB,并畫出線段CD;
②標(biāo)出格點E,使CE⊥AB,并畫出線段CE.
(2)CD與CE的關(guān)系是 .
(3)計算△ABC的面積.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以△ABC的BC邊上一點O為圓心的圓,經(jīng)過A,B兩點,且與BC邊交于點E,D為BE的下半圓弧的中點,連接AD交BC于F,若AC=FC. ![]()
(1)求證:AC是⊙O的切線:
(2)若BF=8,DF=
,求⊙O的半徑r.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com