分析 (1)過(guò)點(diǎn)B作BE⊥y軸于點(diǎn)E,作BF⊥x軸于點(diǎn)F.依題意得BF=OE=2,利用勾股定理求出OF,然后可得點(diǎn)B的坐標(biāo).設(shè)直線(xiàn)AB的解析式是y=kx+b,把已知坐標(biāo)代入可求解.
(2)由△ABD由△AOP旋轉(zhuǎn)得到,△ABD≌△AOP,AP=AD,∠DAB=∠PAO,∠DAP=∠BAO=60°,△ADP是等邊三角形,利用勾股定理求出DP.在Rt△BDG中,∠BGD=90°,∠DBG=60°.利用三角函數(shù)求出BG=BD•cos60°,DG=BD•sin60°.然后求出OH,DH,然后求出點(diǎn)D的坐標(biāo).
(3)分三種情況進(jìn)行討論:
①當(dāng)P在x軸正半軸上時(shí),即t>0時(shí);
②當(dāng)P在x軸負(fù)半軸,但D在x軸上方時(shí);即-$\frac{4\sqrt{3}}{3}$<t≤0時(shí)
③當(dāng)P在x軸負(fù)半軸,D在x軸下方時(shí),即t≤-$\frac{4\sqrt{3}}{3}$時(shí).
綜合上面三種情況即可求出符合條件的t的值.
解答 解:(1)如圖1,![]()
過(guò)點(diǎn)B作BE⊥y軸于點(diǎn)E,作BF⊥x軸于點(diǎn)F.
由已知得:BF=OE=2,
∴OF=$\sqrt{{4}^{2}-{2}^{2}}$=2$\sqrt{3}$,
∴點(diǎn)B的坐標(biāo)是(2$\sqrt{3}$,2).
設(shè)直線(xiàn)AB的解析式是y=kx+b(k≠0),
則有$\left\{\begin{array}{l}{2\sqrt{3}k+b=2}\\{b=4}\end{array}\right.$,
∴$\left\{\begin{array}{l}{k=-\frac{\sqrt{3}}{3}}\\{b=4}\end{array}\right.$.
∴直線(xiàn)AB的解析式是y=-$\frac{\sqrt{3}}{3}$x+4,
(2)∵△ABD由△AOP旋轉(zhuǎn)得到,
∴△ABD≌△AOP.
∴AP=AD,∠DAB=∠PAO.
∴∠DAP=∠BAO=60°.
∴△ADP是等邊三角形.
如圖2,![]()
過(guò)點(diǎn)D作DH⊥x軸于點(diǎn)H,延長(zhǎng)EB交DH于點(diǎn)G,則BG⊥DH.
在Rt△BDG中,∠BGD=90°,∠DBG=60°,
∴BG=BD•cos60°=t×$\frac{1}{2}$=$\frac{t}{2}$.DG=BD•sin60°=$\frac{3}{2}$t.
∴OH=EG=2$\sqrt{3}$+$\frac{1}{2}$t,DH=2+$\frac{\sqrt{3}}{2}$t.
∴點(diǎn)D的坐標(biāo)為(2$\sqrt{3}$+$\frac{1}{2}$t,2+$\frac{\sqrt{3}}{2}$t).
(3)存在.
假設(shè)存在點(diǎn)P,在它的運(yùn)動(dòng)過(guò)程中,使△OPD的面積等于$\frac{\sqrt{3}}{4}$.
設(shè)點(diǎn)P為(t,0),下面分三種情況討論:
①當(dāng)t>0時(shí),如答圖2,BD=OP=t,DG=$\frac{\sqrt{3}}{2}$t,
∴DH=2+$\frac{\sqrt{3}}{2}$t.
∵△OPD的面積等于$\frac{\sqrt{3}}{4}$,
∴$\frac{1}{2}$t(2+$\frac{\sqrt{3}}{2}$t)=$\frac{\sqrt{3}}{4}$,
∴t1=$\frac{\sqrt{21}-2\sqrt{3}}{3}$,t2=$\frac{-\sqrt{21}-2\sqrt{3}}{3}$(舍去).
∴點(diǎn)P1的坐標(biāo)為($\frac{\sqrt{21}-2\sqrt{3}}{3}$,0).
②∵當(dāng)D在x軸上時(shí),如圖3,![]()
根據(jù)銳角三角函數(shù)求出BD=OP=$\frac{4\sqrt{3}}{3}$,
∴當(dāng)-$\frac{4\sqrt{3}}{3}$<t≤0時(shí),如答圖1,BD=OP=-t,DG=-$\frac{\sqrt{3}}{2}$t,
∴GH=BF=2-(-$\frac{\sqrt{3}}{2}$t)=2+$\frac{\sqrt{3}}{2}$t.
∵△OPD的面積等于$\frac{\sqrt{3}}{4}$,
∴-$\frac{1}{2}$t(2-$\frac{\sqrt{3}}{2}$t)=$\frac{\sqrt{3}}{4}$,
∴t1=-$\frac{\sqrt{3}}{3}$,t2=-$\sqrt{3}$
∴點(diǎn)P2的坐標(biāo)為(-$\frac{\sqrt{3}}{3}$,0),點(diǎn)P3的坐標(biāo)為(-$\sqrt{3}$,0).
③當(dāng)t≤-$\frac{4\sqrt{3}}{3}$時(shí),BD=OP=-t,DG=-$\frac{\sqrt{3}}{2}$t,
∴DH=-$\frac{\sqrt{3}}{2}$t-2.
∵△OPD的面積等于$\frac{\sqrt{3}}{4}$,
∴$\frac{1}{2}$(-t)(-2-$\frac{\sqrt{3}}{2}$t)=$\frac{\sqrt{3}}{4}$,
∴t1=$\frac{-\sqrt{21}-2\sqrt{3}}{3}$,t2=$\frac{\sqrt{21}-2\sqrt{3}}{3}$(舍去).
∴點(diǎn)P4的坐標(biāo)為($\frac{-\sqrt{21}-2\sqrt{3}}{3}$,0).
綜上所述,點(diǎn)P的坐標(biāo)分別為P1($\frac{\sqrt{21}-2\sqrt{3}}{3}$,0),P2(-$\frac{\sqrt{3}}{3}$,0),P3(-$\sqrt{3}$,0),P4($\frac{-\sqrt{21}-2\sqrt{3}}{3}$,0).
點(diǎn)評(píng) 此題是幾何變換綜合題,主要考查了待定系數(shù)法求函數(shù)解析式,銳角三角函數(shù)的意義,分類(lèi)思想,解本題的關(guān)鍵是銳角三角函數(shù)的應(yīng)用.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| 每天使用零花錢(qián)(單位:元) | 0 | 1 | 2 | 3 | 4 | 5 |
| 人數(shù) | 2 | 5 | 6 | 4 | 2 | 1 |
| A. | 眾數(shù)是2元 | B. | 中位數(shù)是2元 | C. | 極差是5元 | D. | 平均數(shù)是2.45元 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | ①② | B. | ①③ | C. | ①②③ | D. | ①②③④ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | -3 | B. | 3 | C. | $\frac{1}{3}$ | D. | -$\frac{1}{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 6 | B. | 5 | C. | 4 | D. | 3 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com