欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

已知:在△ABC中,∠ACB=90°,點(diǎn)P是線段AC上一點(diǎn),過(guò)點(diǎn)A作AB的垂線,交BP的延長(zhǎng)線于點(diǎn)M,MN⊥AC于點(diǎn)N,PQ⊥AB于點(diǎn)Q,AQ=MN.
(1)如圖1,求證:PC=AN;
(2)如圖2,點(diǎn)E是MN上一點(diǎn),連接EP并延長(zhǎng)交BC于點(diǎn)K,點(diǎn)D是AB上一點(diǎn),連接DK,∠DKE=∠ABC,EF?PM于點(diǎn)H,交BC延長(zhǎng)線于點(diǎn)F,若NP=2,PC=3,CK:CF=2:3,求DQ的長(zhǎng).
(1)證法一:
如圖①,∵BA⊥AM,MN⊥AP,∴∠BAM=ANM=90°
∴∠PAQ+∠MAN=∠MAN+∠AMN=90°
∴∠PAQ=∠AMN
∵PQ⊥AB  MN⊥AC,∴∠PQA=∠ANM=90°
∴AQ=MN,∴△AQP≌△MNA
∵AN=PQ  AM=AP,∴∠AMB=∠APM
∵∠APM=∠BPC∠BPC+∠PBC=90°,∠AMB+∠ABM=90°
∴∠ABM=∠PBC
∵PQ⊥AB,PC⊥BC
∴PQ=PC(角平分線的性質(zhì)),
∴PC=AN;
證法二:
如圖①,∵BA⊥AM,MN⊥AC,∴∠BAM=ANM=90°
∴∠PAQ+∠MAN=∠MAN+∠AMN=90°
∴∠PAQ=∠AMN
∵PQ⊥AB,∴∠APQ=90°=∠ANM
∴AQ=MN,∴△PQA≌△ANM
∴AP=AM,PQ=AN,∴∠APM=∠AMP
∵∠AQP+∠BAM=180°,∴PQ∥MA
∴∠QPB=∠AMP
∴∠APM=∠BPC,∴∠QPB=∠BPC
∴∠BQP=∠BCP=90°,BP=BP
∴△BPQ≌△BCP
∴PQ=PC,∴PC=AN.
(2)解法一:
如圖②,∵NP=2  PC=3,∴由(1)知PC=AN=3
∴AP=NC=5  AC=8,∴AM=AP=5
∴AQ=MN==4
∵∠PAQ=∠AMN∠ACB=∠ANM=90°
∴∠ABC=∠MAN
∴tan∠ABC=tan∠MAN==
∵tan∠ABC=,∴BC=6
∵NE∥KC,∴∠PEN=∠PKC,
又∵∠ENP=∠KCP,∴△PNE∽△PCK,
=,∴CK:CF=2:3,
設(shè)CK=2k,則CF=3k
=,NE=k.
過(guò)N作NT∥EF交CF于T,則四邊形NTFE是平行四邊形
∵NE=TF=k,∴CT=CF﹣TF=3k﹣k=k
∵EF⊥PM,∴∠BFH+∠HBF=90°=∠BPC+∠HBF,∴∠BPC=∠BFH
∵EF∥NT,∴∠NTC=∠BFH=∠BPC
tan∠NTC=tan∠BPC==2,∴tan∠NTC==2,
∴CT=k=,∴k=,∴CK=2×=3,BK=BC﹣CK=3
∵∠PKC+∠DKC=∠ABC+∠BDK,∠DKE=∠ABC,∴∠BDK=∠PKC
tan∠PKC==1,∴tan∠BDK=1.
過(guò)K作KG∥BD于G
∵tan∠BDK=1,tan∠ABC=,∴設(shè)GK=4n,則BG=3n,GD=4n
∴BK=5n=3,∴n=,∴BD=4n+3n=7n=
∴AB==10,AQ=4,∴BQ=AB﹣AQ=6
∴DQ=BQ﹣BD=6﹣
解法二:
如圖③,∵NP=2,PC=3,∴由(1)知PC=AN=3
∴AP=NC=5,AC=8,∴AM=AP=5
∴AQ=MN==4
∵NM∥BC,∴∠NMP=∠PBC
又∵∠MNP=∠BCP,∴△MNP∽△BCP
=,∴=
BC=6
作ER⊥CF于R,則四邊形NERC是矩形
∴ER=NC=5,NE=CR
∵∠BHE=∠BCR=90°
∴∠EFR=90°﹣∠HBF∠BPC=90°﹣∠HBF
∴∠EFR=∠BPC,∴tan∠EFR=tan∠BPC,∴=,即=
∴RF=,
∵NE=KC,∴∠NEP=∠PKC
又∵∠ENP=∠KCP,∴△NEP∽△CKP,∴==
∴CK:CF=2:3,設(shè)CK=2k,CF=3k
∴NE=CR=k,CR=CF﹣RF=3k﹣,∴3k﹣=k
∴k=,∴CK=3  CR=2×BK=3
在CF的延長(zhǎng)線上取點(diǎn)G,使∠EGR=∠ABC,∴tan∠EGR=tan∠ABC
==,∴RG=ER=,EG==,KG=KC+CR+RG=,
∵∠DKE+∠EKC=∠ABC+∠BDK,∠ABC=∠DKE,∴∠BDK=∠EKC,
∴△BDK∽△GKE,∴=
∴BDEG=BKKG,∴∠BDK=∠EKC,∴△BDK∽△GKE,∴BD=
∴AB==10,AQ=4,∴BQ=AB﹣AQ=6
∴DQ=BQ﹣BD=6﹣=
解法三:
如圖④,∵NP=2,PC=3,∴由(1)知PC=AN=3
∴AP=NC=5,AC=8,∴AM=AP=5
∴AQ=MN==4
∵NM∥BC,∴∠EMH=∠PBC∠PEN=∠PKC
又∵∠PNE=∠PCK,∴△PNE∽△PCK,△PNM∽△PCB
=,=,∴CK:CF=2:3,設(shè)CK=2k,CF=3k
=,=,∴NE=k,BC=6
∴BF=6+3k,ME=MN﹣NE=4﹣k
tan∠ABC==,BP==3
∴sin∠EMH=sin∠PBC==
∵EF⊥PM,∴FH=BFsin∠PBC=(6+3k)
EH=EMsin∠EMH=(4﹣k)
∴tan∠REF=tan∠PBC=,∴tan∠REF=×RF=
∴EF==,∴EH+FH=EF
(4﹣k)+(6+3k)=,∴k=
∴CK=2×=3,BK=BC﹣CK=3
∴∠PKC+∠DKE=∠ABC+∠BDK∠DKE=∠ABC,∴∠BDK=∠PKC
∵tan∠PKC=1,∴tan∠BDK=1,
過(guò)K作KG⊥BD于G
∴tan∠BDK=1,tan∠ABC=
∴設(shè)GK=4n,則BG=3n,GD=4n
∴BK=5n=3,∴n=,∴BD=4n+3n=7n=
∴AB==10,AQ=4,∴BQ=AB﹣AQ=6
∴DQ=BQ﹣BD=6﹣

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

25、已知:在△ABC中AB=AC,點(diǎn)D在CB的延長(zhǎng)線上.
求證:AD2-AB2=BD•CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)(1)化簡(jiǎn):(a-
1
a
)÷
a2-2a+1
a
;
(2)已知:在△ABC中,AB=AC.
①設(shè)△ABC的周長(zhǎng)為7,BC=y,AB=x(2≤x≤3).寫出y關(guān)于x的函數(shù)關(guān)系式;
②如圖,點(diǎn)D是線段BC上一點(diǎn),連接AD,若∠B=∠BAD,求證:△BAC∽△BDA.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖,已知,在△ABC中,∠ABC和∠ACB的平分線交于點(diǎn)M,ME∥AB交BC于點(diǎn)E,MF∥AC交BC于點(diǎn)F.求證:△MEF的周長(zhǎng)等于BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

12、已知,在△ABC中,AB=AC=x,BC=6,則腰長(zhǎng)x的取值范圍是
x>3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:在△ABC中,∠B<∠C,AD平分∠BAC,AE⊥BC,垂足為點(diǎn)E.∠B=38°,∠C=70°.
①求∠DAE的度數(shù);
②試寫出∠DAE與∠B、∠C之間的一般等量關(guān)系式(只寫結(jié)論)

查看答案和解析>>

同步練習(xí)冊(cè)答案