(1)證法一:
如圖①,∵BA⊥AM,MN⊥AP,∴∠BAM=ANM=90°
∴∠PAQ+∠MAN=∠MAN+∠AMN=90°
∴∠PAQ=∠AMN
∵PQ⊥AB MN⊥AC,∴∠PQA=∠ANM=90°
∴AQ=MN,∴△AQP≌△MNA
∵AN=PQ AM=AP,∴∠AMB=∠APM
∵∠APM=∠BPC∠BPC+∠PBC=90°,∠AMB+∠ABM=90°
∴∠ABM=∠PBC
∵PQ⊥AB,PC⊥BC
∴PQ=PC(角平分線的性質(zhì)),
∴PC=AN;
證法二:
如圖①,∵BA⊥AM,MN⊥AC,∴∠BAM=ANM=90°
∴∠PAQ+∠MAN=∠MAN+∠AMN=90°
∴∠PAQ=∠AMN
∵PQ⊥AB,∴∠APQ=90°=∠ANM
∴AQ=MN,∴△PQA≌△ANM
∴AP=AM,PQ=AN,∴∠APM=∠AMP
∵∠AQP+∠BAM=180°,∴PQ∥MA
∴∠QPB=∠AMP
∴∠APM=∠BPC,∴∠QPB=∠BPC
∴∠BQP=∠BCP=90°,BP=BP
∴△BPQ≌△BCP
∴PQ=PC,∴PC=AN.
(2)解法一:
如圖②,∵NP=2 PC=3,∴由(1)知PC=AN=3
∴AP=NC=5 AC=8,∴AM=AP=5
∴AQ=MN=

=4
∵∠PAQ=∠AMN∠ACB=∠ANM=90°
∴∠ABC=∠MAN
∴tan∠ABC=tan∠MAN=

=

∵tan∠ABC=

,∴BC=6
∵NE∥KC,∴∠PEN=∠PKC,
又∵∠ENP=∠KCP,∴△PNE∽△PCK,
∴

=

,∴CK:CF=2:3,
設(shè)CK=2k,則CF=3k
∴

=

,NE=

k.
過(guò)N作NT∥EF交CF于T,則四邊形NTFE是平行四邊形
∵NE=TF=

k,∴CT=CF﹣TF=3k﹣

k=

k
∵EF⊥PM,∴∠BFH+∠HBF=90°=∠BPC+∠HBF,∴∠BPC=∠BFH
∵EF∥NT,∴∠NTC=∠BFH=∠BPC
tan∠NTC=tan∠BPC=

=2,∴tan∠NTC=

=2,
∴CT=

k=

,∴k=

,∴CK=2×

=3,BK=BC﹣CK=3
∵∠PKC+∠DKC=∠ABC+∠BDK,∠DKE=∠ABC,∴∠BDK=∠PKC
tan∠PKC=

=1,∴tan∠BDK=1.
過(guò)K作KG∥BD于G
∵tan∠BDK=1,tan∠ABC=

,∴設(shè)GK=4n,則BG=3n,GD=4n
∴BK=5n=3,∴n=

,∴BD=4n+3n=7n=

∴AB=

=10,AQ=4,∴BQ=AB﹣AQ=6
∴DQ=BQ﹣BD=6﹣

解法二:
如圖③,∵NP=2,PC=3,∴由(1)知PC=AN=3
∴AP=NC=5,AC=8,∴AM=AP=5
∴AQ=MN=

=4
∵NM∥BC,∴∠NMP=∠PBC
又∵∠MNP=∠BCP,∴△MNP∽△BCP
∴

=

,∴

=

BC=6
作ER⊥CF于R,則四邊形NERC是矩形
∴ER=NC=5,NE=CR
∵∠BHE=∠BCR=90°
∴∠EFR=90°﹣∠HBF∠BPC=90°﹣∠HBF
∴∠EFR=∠BPC,∴tan∠EFR=tan∠BPC,∴

=

,即

=

∴RF=

,
∵NE=KC,∴∠NEP=∠PKC
又∵∠ENP=∠KCP,∴△NEP∽△CKP,∴

=

=

∴CK:CF=2:3,設(shè)CK=2k,CF=3k
∴NE=CR=

k,CR=CF﹣RF=3k﹣

,∴3k﹣

=

k
∴k=

,∴CK=3 CR=2×BK=3
在CF的延長(zhǎng)線上取點(diǎn)G,使∠EGR=∠ABC,∴tan∠EGR=tan∠ABC
∴

=

=

,∴RG=

ER=

,EG=

=

,KG=KC+CR+RG=

,
∵∠DKE+∠EKC=∠ABC+∠BDK,∠ABC=∠DKE,∴∠BDK=∠EKC,
∴△BDK∽△GKE,∴

=

∴BDEG=BKKG,∴∠BDK=∠EKC,∴△BDK∽△GKE,∴BD=

∴AB=

=10,AQ=4,∴BQ=AB﹣AQ=6
∴DQ=BQ﹣BD=6﹣

=

解法三:
如圖④,∵NP=2,PC=3,∴由(1)知PC=AN=3
∴AP=NC=5,AC=8,∴AM=AP=5
∴AQ=MN=

=4
∵NM∥BC,∴∠EMH=∠PBC∠PEN=∠PKC
又∵∠PNE=∠PCK,∴△PNE∽△PCK,△PNM∽△PCB
∴

=

,

=

,∴CK:CF=2:3,設(shè)CK=2k,CF=3k
∴

=

,

=

,∴NE=

k,BC=6
∴BF=6+3k,ME=MN﹣NE=4﹣

k
tan∠ABC=

=

,BP=

=3

∴sin∠EMH=sin∠PBC=

=

∵EF⊥PM,∴FH=BFsin∠PBC=

(6+3k)
EH=EMsin∠EMH=

(4﹣

k)
∴tan∠REF=tan∠PBC=

,∴tan∠REF=

×RF=

∴EF=

=

,∴EH+FH=EF
∴

(4﹣

k)+

(6+3k)=

,∴k=

∴CK=2×

=3,BK=BC﹣CK=3
∴∠PKC+∠DKE=∠ABC+∠BDK∠DKE=∠ABC,∴∠BDK=∠PKC
∵tan∠PKC=1,∴tan∠BDK=1,
過(guò)K作KG⊥BD于G
∴tan∠BDK=1,tan∠ABC=

∴設(shè)GK=4n,則BG=3n,GD=4n
∴BK=5n=3,∴n=

,∴BD=4n+3n=7n=

∴AB=

=10,AQ=4,∴BQ=AB﹣AQ=6
∴DQ=BQ﹣BD=6﹣

.



