在▱ABCD中,P是AB邊上的任意一點(diǎn),過P點(diǎn)作PE⊥AB,交AD于E,連結(jié)CE,CP.已知∠A=60°;
(1)若BC=8,AB=6,當(dāng)AP的長為多少時(shí),△CPE的面積最大,并求出面積的最大值.
(2)試探究當(dāng)△CPE≌△CPB時(shí),▱ABCD的兩邊AB與BC應(yīng)滿足什么關(guān)系?
![]()
考點(diǎn):
四邊形綜合題.
專題:
計(jì)算題.
分析:
(1)延長PE交CD的延長線于F,設(shè)AP=x,△CPE的面積為y,由四邊形ABCD為平行四邊形,利用平行四邊形的對(duì)邊相等得到AB=DC,AD=BC,在直角三角形APE中,根據(jù)∠A的度數(shù)求出∠PEA的度數(shù)為30度,利用直角三角形中30度所對(duì)的直角邊等于斜邊的一半表示出AE與PE,由AD﹣AE表示出DE,再利用對(duì)頂角相等得到∠DEF為30度,利用30度所對(duì)的直角邊等于斜邊的一半表示出DF,由兩直線平行內(nèi)錯(cuò)角相等得到∠F為直角,表示出三角形CPE的面積,得出y與x的函數(shù)解析式,利用二次函數(shù)的性質(zhì)即可得到三角形CPE面積的最大值,以及此時(shí)AP的長;
(2)由△CPE≌△CPB,利用全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等得到BC=CE,∠B=∠PEC=120°,進(jìn)而得出∠ECD=∠CED,利用等角對(duì)等邊得到ED=CD,即三角形ECD為等腰三角形,過D作DM垂直于CE,∠ECD=30°,利用銳角三角形函數(shù)定義表示出cos30°,得出CM與CD的關(guān)系,進(jìn)而得出CE與CD的關(guān)系,即可確定出AB與BC滿足的關(guān)系.
解答:
解:(1)延長PE交CD的延長線于F,
設(shè)AP=x,△CPE的面積為y,
∵四邊形ABCD為平行四邊形,
∴AB=DC=6,AD=BC=8,
∵Rt△APE,∠A=60°,
∴∠PEA=30°,
∴AE=2x,PE=
x,
在Rt△DEF中,∠DEF=∠PEA=30°,DE=AD﹣AE=8﹣2x,
∴DF=
DE=4﹣x,
∵AB∥CD,PF⊥AB,
∴PF⊥CD,
∴S△CPE=
PE•CF,
即y=
×
x×(10﹣x)=﹣
x2+5
x,
配方得:y=﹣
(x﹣5)2+
,
當(dāng)x=5時(shí),y有最大值
,
即AP的長為5時(shí),△CPE的面積最大,最大面積是
;
(2)當(dāng)△CPE≌△CPB時(shí),有BC=CE,∠B=∠PEC=120°,
∴∠CED=180°﹣∠AEP﹣∠PEC=30°,
∵∠ADC=120°,
∴∠ECD=∠CED=180°﹣120°﹣30°=30°,
∴DE=CD,即△EDC是等腰三角形,
過D作DM⊥CE于M,則CM=
CE,
在Rt△CMD中,∠ECD=30°,
∴cos30°=
=
,
∴CM=
CD,
∴CE=
CD,
∵BC=CE,AB=CD,
∴BC=
AB,
則當(dāng)△CPE≌△CPB時(shí),BC與AB滿足的關(guān)系為BC=
AB.
![]()
點(diǎn)評(píng):
此題考查了四邊形的綜合題,涉及的知識(shí)有:平行四邊形的性質(zhì),含30度直角三角形的性質(zhì),平行線的判定與性質(zhì),以及二次函數(shù)的性質(zhì),是一道多知識(shí)點(diǎn)綜合的探究題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年遼寧省沈陽市鐵西區(qū)九年級(jí)上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:選擇題
如圖,已知在▱ABCD中,AD=3cm,AB=2cm,則▱ABCD的周長等于( )
![]()
A.10cm B.6cm C.5cm D.4cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇東臺(tái)創(chuàng)新學(xué)校九年級(jí)上學(xué)期第二次階段測試數(shù)學(xué)試卷(解析版) 題型:填空題
如圖,在▱ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,則DF=
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(四川雅安卷)數(shù)學(xué)(解析版) 題型:填空題
如圖,在▱ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,則DF= ..
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(吉林長春卷)數(shù)學(xué)(解析版) 題型:解答題
如圖①,在▱ABCD中,AB=13,BC=50,BC邊上的高為12.點(diǎn)P從點(diǎn)B出發(fā),沿B﹣A﹣D﹣A運(yùn)動(dòng),沿B﹣A運(yùn)動(dòng)時(shí)的速度為每秒13個(gè)單位長度,沿A﹣D﹣A運(yùn)動(dòng)時(shí)的速度為每秒8個(gè)單位長度.點(diǎn)Q從點(diǎn) B出發(fā)沿BC方向運(yùn)動(dòng),速度為每秒5個(gè)單位長度.P、Q兩點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)Q到達(dá)點(diǎn)C時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(秒).連結(jié)PQ.
![]()
(1)當(dāng)點(diǎn)P沿A﹣D﹣A運(yùn)動(dòng)時(shí),求AP的長(用含t的代數(shù)式表示).
(2)連結(jié)AQ,在點(diǎn)P沿B﹣A﹣D運(yùn)動(dòng)過程中,當(dāng)點(diǎn)P與點(diǎn)B、點(diǎn)A不重合時(shí),記△APQ的面積為S.求S與t之間的函數(shù)關(guān)系式.
(3)過點(diǎn)Q作QR∥AB,交AD于點(diǎn)R,連結(jié)BR,如圖②.在點(diǎn)P沿B﹣A﹣D運(yùn)動(dòng)過程中,當(dāng)線段PQ掃過的圖形(陰影部分)被線段BR分成面積相等的兩部分時(shí)t的值.
(4)設(shè)點(diǎn)C、D關(guān)于直線PQ的對(duì)稱點(diǎn)分別為C′、D′,直接寫出C′D′∥BC時(shí)t的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com