已知:如圖,AC⊙O是的直徑,BC是⊙O的弦,點P是⊙O外一點,∠PBA=∠C.
(1)求證:PB是⊙O的切線;
(2)若OP∥BC,且OP=8,BC=2.求⊙O的半徑.
![]()
考點:
切線的判定;全等三角形的判定與性質
分析:
(1)連接OB,求出∠ABC=90°,∠PBA=∠OBC=∠OCB,推出∠PBO=90°,根據切線的判定推出即可;
(2)證△PBO和△ABC相似,得出比例式,代入求出即可.
解答:
(1)證明:連接OB,
∵AC是⊙O直徑,
∴∠ABC=90°,
∵OC=OB,
∴∠OBC=∠ACB,
∵∠PBA=∠ACB,
∴∠PBA=∠OBC,
即∠PBA+∠OBA=∠OBC+∠ABO=∠ABC=90°,
∴OB⊥PB,
∵OB為半徑,
∴PB是⊙O的切線;
(2)解:設⊙O的半徑為r,則AC=2r,OB=R,
∵OP∥BC,∠OBC=∠OCB,
∴∠POB=∠OBC=∠OCB,
∵∠PBO=∠ABC=90°,
∴△PBO∽△ABC,
∴
=
,
∴
=
,
r=2
,
即⊙O的半徑為2
.
![]()
點評:
本題考查了等腰三角形性質,平行線性質,相似三角形的性質和判定,切線的判定等知識點的應用,主要考查學生的推理能力,用了方程思想.
科目:初中數(shù)學 來源: 題型:
| 1 | OD |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com