在△ABC中,∠C=90°,AC=BC=4,D是AB的中點(diǎn),點(diǎn)E、F分別在AC、BC邊上運(yùn)動(點(diǎn)E不與點(diǎn)A、C重合),且保持AE=CF,連接DE、DF、EF.在此運(yùn)動變化的過程中,有下列結(jié)論:![]()
①△DFE是等腰直角三角形;
②四邊形CEDF不可能為正方形;
③四邊形CEDF的面積隨點(diǎn)E位置的改變而發(fā)生變化;
④點(diǎn)C到線段EF的最大距離為
.
其中正確結(jié)論的個數(shù)是( 。
A.1個 B.2個 C.3個 D.4個
B
解析試題分析:①作常規(guī)輔助線連接CD,由SAS定理可證△CDF和△ADE全等,從而可證∠EDF=90°,DE=DF.所以△DFE是等腰直角三角形;
②當(dāng)E為AC中點(diǎn),F(xiàn)為BC中點(diǎn)時,四邊形CEDF為正方形;
③由割補(bǔ)法可知四邊形CEDF的面積保持不變;
④△DEF是等腰直角三角形,
DE=EF,當(dāng)DF與BC垂直,即DF最小時,F(xiàn)E取最小值
,此時點(diǎn)C到線段EF的最大距離.
①連接CD![]()
∵△ABC是等腰直角三角形,
∴∠DCB=∠A=45°,CD=AD=DB;
∵AE=CF,
∴△ADE≌△CDF;
∴ED=DF,∠CDF=∠EDA;
∵∠ADE+∠EDC=90°,
∴∠EDC+∠CDF=∠EDF=90°,
∴△DFE是等腰直角三角形.故此選項正確;
②當(dāng)E、F分別為AC、BC中點(diǎn)時,四邊形CDFE是正方形,故此選項錯誤;
③如圖所示,分別過點(diǎn)D,作DM⊥AC,DN⊥BC,于點(diǎn)M,N,![]()
可以利用割補(bǔ)法可知四邊形CEDF的面積等于正方形CMDN面積,故面積保持不變;故此選項錯誤;
④△DEF是等腰直角三角形,
DE=EF,
當(dāng)EF∥AB時,
∵AE=CF,
∴E,F(xiàn)分別是AC,BC的中點(diǎn),故EF是△ABC的中位線,
∴EF取最小值
,
∵CE=CF=2,
∴此時點(diǎn)C到線段EF的最大距離為
,故此選項正確;
故正確的有2個,
故選B.
考點(diǎn):全等三角形的判定與性質(zhì),正方形、等腰三角形、直角三角形性質(zhì)
點(diǎn)評:根據(jù)圖形利用割補(bǔ)法可知四邊形CEDF的面積等于正方形CMDN面積是解題關(guān)鍵.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com