分析 (1)根據(jù)等腰直角三角形的性質(zhì)可以得出∠EAC=∠DAB,再有AB=AC,AD=AE,根據(jù)SAS就可以得出結(jié)論;
(2)根據(jù)勾股定理可以求出BC的值為2$\sqrt{2}$,就可以得出BC=DC,在△BCD中由勾股定理的逆定理可以得出△BCD為等腰直角三角形,就可以得出∠BCD=90°,從而得出∠ACD的度數(shù);
(3)由(2)可以知道∠CDB=45°,而∠ABC=45°,就可以得出△ABD是直角三角形,由勾股定理就可以求出AB的值,再由勾股定理就可以求出DE的值.
解答 解:(1)∵∠BAC=∠DAE=90°,
∴∠BAC-∠DAC=∠DAE-∠DAC,
即∠EAC=∠BAD.
在△ACE和△ABD中,
$\left\{\begin{array}{l}{AE=AD}\\{∠EAC=∠DAB}\\{AC=AB}\end{array}\right.$,
∴△ACE≌△ABD(SAS);
(2)∵△ACE≌△ABD(SAS),
∴DB=EC=4,
在Rt△ABC中,AB2+AC2=BC2,
∴BC2=22+22=8,
在△DBC中,BC2+DC2=8+8=16=42=BD2,
∴∠DCB=90°,
∴∠ACD=90°+45°=135°;
(3)∵BC2=8,DC2=8,
∴BC=DC.
∵∠DCB=90°,
∴∠DBC=45°.
∵∠ABC=45°,
∴∠ABD=90°.
在Rt△ABD中由勾股定理,得:
AD=$\sqrt{4+16}=2\sqrt{5}$.
在Rt△AED中由勾股定理,得:
ED=$\sqrt{20+20}=2\sqrt{10}$.
故答案為:$2\sqrt{10}$.
點(diǎn)評(píng) 本題考查了等腰直角三角形的性質(zhì)的運(yùn)用,勾股定理的運(yùn)用及勾股定理的逆定理的運(yùn)用,全等三角形的判定及性質(zhì)的運(yùn)用,解答時(shí)靈活運(yùn)用勾股定理及逆定理是解答本題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{\sqrt{5}}{5}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 抽取兩天作為一個(gè)樣本 | |
| B. | 選取每周星期日為樣本 | |
| C. | 春、夏、秋、冬每個(gè)季節(jié)各選兩周作為樣本 | |
| D. | 以全年每一天為樣本 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | -3和-(-3) | B. | -3和|-3| | C. | 23和3×2 | D. | -23和(-2)3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 兩點(diǎn)確定一條直線 | B. | 兩點(diǎn)之間,線段最短 | ||
| C. | 垂線段最短 | D. | 同位角相等,兩直線平行 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com