如圖,在△ABC中,∠B= 90°,點P從A點開始沿AB邊向點B以1厘米/秒的速度移動,點Q從B點開始沿BC邊向點C以2厘米/秒的速度移動。
![]()
(1)如果P、Q分別從A、B兩點同時出發(fā),經(jīng)過幾秒鐘,△PBQ的面積等于8厘米2?
(2)如果P、Q兩分別從A、B兩點同時出發(fā),并且P到B又繼續(xù)在BC邊上前進(jìn),Q到C后又繼續(xù)在CA邊上前進(jìn),經(jīng)過幾秒鐘,△PCQ的面積等于12﹒6厘米2 ?
【解析】
試題分析:設(shè)經(jīng)過x秒使△PBQ得面積等于8平方厘米,根據(jù)AB=6厘米,BC=8厘米,點P從點A開始沿AB邊向B以1厘米/秒的速度移動和三角形的面積公式,列出方程,再進(jìn)行求解即可;
(2)設(shè)經(jīng)x秒,點P移動到BC上,且有CP=(14-x)cm,點Q移動到CA上,且使CQ=(2x-8)cm,過Q作QD⊥CB,垂足為D,根據(jù)QD⊥CB,∠B=90°,得出DQ∥AB,從而得出△CQD∽△CAB,即可求出QD的值,最后根據(jù)三角形的面積公式,即可得出x的值,再根據(jù)實際情況,即可為得出答案.
試題解析:(1)設(shè)經(jīng)過x秒使△PBQ得面積等于8平方厘米,根據(jù)題意得:
×2x(6-x)=8,
整理得:(x-2)(x-4)=0,
解得:x1=2,x2=4,
答:經(jīng)過2秒或4秒,使△PBQ得面積等于8平方厘米;
(2)設(shè)經(jīng)x秒,點P移動到BC上,且有CP=(14-x)cm,點Q移動到CA上,且使CQ=(2x-8)cm,
過Q作QD⊥CB,垂足為D,
∵QD⊥CB,∠B=90°,
∴DQ∥AB,
∴∠CDQ=∠CAB,
∴△CQD∽△CAB,
∴
,即:QD=
,
由題意得
(14-x)•
=12.6,
解得:x1=7,x2=11,
經(jīng)7秒,點P在BC上距離C點7cm處,點Q在CA上距離C點6cm處,使△PCQ的面積等于12.6cm2;
經(jīng)11秒,點P在BC上距離C點3cm處,點Q在CA上距離C點14cm處,14>10,點Q已超出CA的范圍,此解不存在;
綜上所述,經(jīng)過7秒△PCQ的面積等于12.6cm2.
考點: 一元二次方程的應(yīng)用.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
A、
| ||||
B、(
| ||||
C、
| ||||
D、
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com