欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

已知:如圖,點P是正方形ABCD內(nèi)的一點,連結(jié)PA,PB,PC.

(1)如圖甲,將△PAB繞點B順時針旋轉(zhuǎn)90°到△的位置.

①設(shè)AB的長為a,PB的長為b(b<a),求△PAB旋轉(zhuǎn)到△的過程中邊PA所掃過區(qū)域 (圖甲中陰影部分)的面積;

②若PA=3,PB=6,∠APB=135°,求PC的長.

(2)如圖乙,若PA2+PC2=2PB2,請說明點P必在對角線AC上.

 

【答案】

(1)①②6;(2)將△PAB繞點B順時針旋轉(zhuǎn)90°到△P′CB的位置,由勾股逆定理證出∠=90°,再證∠BPC+∠APB=180°,即點P在對角線AC上.

【解析】

試題分析:(1)①△PAB旋轉(zhuǎn)到△P′CB的過程中邊PA所掃過區(qū)域(圖1中陰影部分)的面積實際是大扇形OAC與小扇形BPP′的面積差,且這兩個扇形的圓心角同為90度;

②連接PP′,證△PBP′為等腰直角三角形,從而可在Rt△PP′C中,用勾股定理求得PC=6;

(2)將△PAB繞點B順時針旋轉(zhuǎn)90°到△P′CB的位置,由勾股逆定理證出∠=90°,再證∠BPC+∠APB=180°,即點P在對角線AC上.

②連接PP′

根據(jù)旋轉(zhuǎn)的性質(zhì)可知:

BP=BP′,∠PBP′=90°;

即:△PBP′為等腰直角三角形,

∴∠BPP′=45°,

∵∠BPA=∠BP′C=135°,∠BP′P=45°,

∴∠BPA+∠BPP′=180°,

即A、P、P′共線,

∴∠PP′C=135°-45°=90°;

在Rt△PP′C中,PP′=4,P′C=PA=2,根據(jù)勾股定理可得PC=6.

(2)將△PAB繞點B順時針旋轉(zhuǎn)90°到△P′CB的位置,連接PP′.

同(1)①可知:△BPP′是等腰直角三角形,即PP′2=2PB2

∵PA2+PC2=2PB2=PP′2,

∴PC2+P′C2=PP′2,

∴∠P′CP=90°;

∵∠PBP′=∠PCP′=90°,在四邊形BPCP′中,∠BP′C+∠BPC=180°;

∵∠BPA=∠BP′C,

∴∠BPC+∠APB=180°,即點P在對角線AC上.

考點:扇形的面積公式,旋轉(zhuǎn)的性質(zhì),三角形的性質(zhì),正方形的性質(zhì)

點評:本題知識點多,綜合性強,是中考常見題,需要學(xué)生熟練掌握平面圖形的基本概念,難度較大.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,點O是平面直角坐標(biāo)系的原點,點A的坐標(biāo)為(0,-4),點B為x軸上一動點,以線段AB為邊作正方形ABCD(按逆時針方向標(biāo)記),正方形ABCD隨著點B的運動而隨之相應(yīng)變動.點E為y軸的正半軸與正方形A精英家教網(wǎng)BCD某一邊的交點,設(shè)點B的坐標(biāo)為(t,0),線段OE的長度為m.
(1)當(dāng)t=3時,求點C的坐標(biāo);
(2)當(dāng)t>0時,求m與t之間的函數(shù)關(guān)系式;
(3)是否存在t,使點M(-2,2)落在正方形ABCD的邊上?若存在,請求出所有符合條件的t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•房山區(qū)一模)已知:如圖,點P是線段AB上的動點,分別以AP、BP為邊向線段AB的同側(cè)作正△APC和正△BPD,AD和BC交于點M.
(1)當(dāng)△APC和△BPD面積之和最小時,直接寫出AP:PB的值和∠AMC的度數(shù);
(2)將點P在線段AB上隨意固定,再把△BPD按順時針方向繞點P旋轉(zhuǎn)一個角度α,當(dāng)α<60°時,旋轉(zhuǎn)過程中,∠AMC的度數(shù)是否發(fā)生變化?證明你的結(jié)論.
(3)在第(2)小題給出的旋轉(zhuǎn)過程中,若限定60°<α<120°,∠AMC的大小是否會發(fā)生變化?若變化,請寫出∠AMC的度數(shù)變化范圍;若不變化,請寫出∠AMC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,點P是線段AB上的動點,分別以AP、BP為邊向線段AB的同側(cè)作正△APC和正△BPD,AD和BC交于點M.
(1)當(dāng)△APC和△BPD面積之和最小時,直接寫出AP:PB的值和∠AMC的度數(shù);
(2)將點P在線段AB上隨意固定,再把△BPD按順時針方向繞點P旋轉(zhuǎn)一個角度α,當(dāng)α<60°時,旋轉(zhuǎn)過程中,∠AMC的度數(shù)是否發(fā)生變化?證明你的結(jié)論.
(3)在第(2)小題給出的旋轉(zhuǎn)過程中,若限定60°<α<120°,∠AMC的大小是否會發(fā)生變化?若變化,請寫出∠AMC的度數(shù)變化范圍;若不變化,請寫出∠AMC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年江蘇省徐州市睢寧縣新世紀(jì)中學(xué)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

已知:如圖,點O是平面直角坐標(biāo)系的原點,點A的坐標(biāo)為(0,-4),點B為x軸上一動點,以線段AB為邊作正方形ABCD(按逆時針方向標(biāo)記),正方形ABCD隨著點B的運動而隨之相應(yīng)變動.點E為y軸的正半軸與正方形ABCD某一邊的交點,設(shè)點B的坐標(biāo)為(t,0),線段OE的長度為m.
(1)當(dāng)t=3時,求點C的坐標(biāo);
(2)當(dāng)t>0時,求m與t之間的函數(shù)關(guān)系式;
(3)是否存在t,使點M(-2,2)落在正方形ABCD的邊上?若存在,請求出所有符合條件的t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省金衢十一校聯(lián)考中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2013•惠山區(qū)一模)已知:如圖,點O是平面直角坐標(biāo)系的原點,點A的坐標(biāo)為(0,-4),點B為x軸上一動點,以線段AB為邊作正方形ABCD(按逆時針方向標(biāo)記),正方形ABCD隨著點B的運動而隨之相應(yīng)變動.點E為y軸的正半軸與正方形ABCD某一邊的交點,設(shè)點B的坐標(biāo)為(t,0),線段OE的長度為m.
(1)當(dāng)t=3時,求點C的坐標(biāo);
(2)當(dāng)t>0時,求m與t之間的函數(shù)關(guān)系式;
(3)是否存在t,使點M(-2,2)落在正方形ABCD的邊上?若存在,請求出所有符合條件的t的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案