【題目】如圖,在平行四邊形ABCD和平行四邊形BEFG中,AB=AD,BG=BE,點(diǎn)A、 B、 E在同一直線(xiàn)上,P是線(xiàn)段DF的中點(diǎn),連接PG、PC,若∠ABC=∠BEF=60°,則
=( )
![]()
A.
B.
C.
D.![]()
【答案】B
【解析】
可通過(guò)構(gòu)建全等三角形求解.延長(zhǎng)GP交DC于H,可證三角形DHP和PGF全等,已知的有DC∥GF,根據(jù)平行線(xiàn)間的內(nèi)錯(cuò)角相等可得出兩三角形中兩組對(duì)應(yīng)的角相等,又有DP=PF,因此構(gòu)成了全等三角形判定條件中的(AAS),于是兩三角形全等,那么HP=PG,可根據(jù)三角函數(shù)來(lái)得出PG、CP的比例關(guān)系.
延長(zhǎng)GP交DC于點(diǎn)H,
![]()
∵AB=AD,BG=BE,
∴平行四邊形ABCD和平行四邊形BEFG都是菱形,
∵P是線(xiàn)段DF的中點(diǎn),
∴FP=DP,
由題意可知DC∥GF,
∴∠GFP=∠HDP,
∵∠GPF=∠HPD,
∴△GFP≌△HDP,
∴GP=HP,GF=HD,
∵四邊形ABCD是菱形,
∴CD=CB,
∴CG=CH
∴△CHG是等腰三角形,
∴PG⊥PC,(三線(xiàn)合一)
又∵∠ABC=∠BEF=60°,
∴∠GCP=60°,
∴
=
.
故選B.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將拋物線(xiàn)
向左平移2個(gè)單位,再向上平移4個(gè)單位得到一個(gè)新的拋物線(xiàn).
(1)求新的拋物線(xiàn)的解析式.
(2)過(guò)
作直線(xiàn)
,使得直線(xiàn)
與新的拋物線(xiàn)僅有一個(gè)公共點(diǎn),求直線(xiàn)
的解析式及相應(yīng)公共點(diǎn)的坐標(biāo).
(3)請(qǐng)猜想在新的拋物線(xiàn)上是否有且僅有四個(gè)點(diǎn)
、
、
、
使得
、
、
、
分別與(2)中的所有公共點(diǎn)所圍成的圖形的面積均為S?若有,請(qǐng)求出S并直接寫(xiě)出
、
、
、
的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn)y=﹣kx+m與雙曲線(xiàn)y=
(x>0)交于A、B兩點(diǎn),點(diǎn)A的橫坐標(biāo)為1,點(diǎn)B的縱坐標(biāo)為2,點(diǎn)P是y軸上一動(dòng)點(diǎn),當(dāng)△PAB的周長(zhǎng)最小時(shí),點(diǎn)P的坐標(biāo)是_______.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,2分別是某款籃球架的實(shí)物圖與示意圖,已知底座BC的長(zhǎng)為0.60m,底座BC與支架AC所成的角∠ACB=75°,點(diǎn)A、H、F在同一條直線(xiàn)上,支架AH段的長(zhǎng)為1m,HF段的長(zhǎng)為1.50m,籃板底部支架HE的長(zhǎng)為0.75m.
(1)求籃板底部支架HE與支架AF所成的角∠FHE的度數(shù).
(2)求籃板頂端F到地面的距離.(結(jié)果精確到0.1 m;參考數(shù)據(jù):cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,
≈1.732,
≈1.414)
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,對(duì)角線(xiàn)AC,BD相交于點(diǎn)O,過(guò)點(diǎn)O作一條直線(xiàn)分別交DA,BC的延長(zhǎng)線(xiàn)于點(diǎn)E,F,連接BE,DF.
(1)求證:四邊形BFDE是平行四邊形;
(2)若EF⊥AB,垂足為M,
,AE=2,求菱形ABCD的邊長(zhǎng).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果一元二次方程ax2+bx+c=0 的兩根 x1,x2均為正數(shù),其中x1>x2,且滿(mǎn)足1<x1﹣x2<2,那么稱(chēng)這個(gè)方程有“友好根”.
(1)方程(x﹣
)(x﹣
)=0_____“友好根”(填:“有”或“沒(méi)有”);
(2)已知關(guān)于x的 x2﹣(t﹣1)x+t﹣2=0有“友好根”,求 t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的益智玩具由一塊主板AB和一個(gè)支撐架CD組成,其側(cè)面示意圖如圖1所示,測(cè)得AB⊥BD,AB=40cm,CD=25cm,點(diǎn)C為AB的中點(diǎn).現(xiàn)為了方便兒童操作,需調(diào)整玩具的擺放,將AB繞點(diǎn)B順時(shí)針旋轉(zhuǎn),CD繞點(diǎn)C旋轉(zhuǎn),同時(shí)點(diǎn)D做水平滑動(dòng)(如圖2),當(dāng)點(diǎn)C1到BD的距離為10cm時(shí)停止運(yùn)動(dòng),求點(diǎn)A經(jīng)過(guò)的路徑的長(zhǎng)和點(diǎn)D滑動(dòng)的距離.(結(jié)果保留整數(shù),參考數(shù)據(jù):
≈1.732,
≈4.583,π≈3.142)
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合與探究
如圖,在平面直角坐標(biāo)系中,已知拋物線(xiàn)
與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,直線(xiàn)l經(jīng)過(guò)坐標(biāo)原點(diǎn)O,與拋物線(xiàn)的一個(gè)交點(diǎn)為D,與拋物線(xiàn)的對(duì)稱(chēng)軸交于點(diǎn)E,連接CE,已知點(diǎn)A,D的坐標(biāo)分別為(-2,0),(6,-8).
![]()
(1)求拋物線(xiàn)的函數(shù)表達(dá)式,并分別求出點(diǎn)B和點(diǎn)E的坐標(biāo);
(2)試探究拋物線(xiàn)上是否存在點(diǎn)F,使
≌
,若存在,請(qǐng)直接寫(xiě)出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)若點(diǎn)P是y軸負(fù)半軸上的一個(gè)動(dòng)點(diǎn),設(shè)其坐標(biāo)為(0,m),直線(xiàn)PB與直線(xiàn)l交于點(diǎn)Q.試探究:當(dāng)m為何值時(shí),
是等腰三角形.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com